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The Main Name System

Timothy John Deegan

Emmanuel College, University of Cambridge

The Domain Name System (DNS) is a globally distributed nameservice

for the internet. It uses delegation of areas of the namespace to spread

both the administrative load and the service load. However, this deleg-

ation introduces complexity onto the operation of the service, which in

turn brings opportunities for delay, failure and error.

In this dissertation, we present a centralized architecture for the DNS,

which removes the link between administrative delegation and distribu-

tion of nameservice. By aggregating all DNS data at a few servers, it

makes name lookups simpler, and removes the errors associated with in-

consistency of data. This is done without requiring changes to the lookup

protocol, the namespace, or the deployed client base. The cost of the

simplified lookups is a more complex update mechanism; however, since

nameservice updates are rarer and more tolerant of delay than lookups,

this is an improvement.

We describe the current workload of the DNS, as a yardstick against

which other nameservices might be measured. We then discuss how a

centralized service could be built to handle the queries and updates of the

current DNS, and describe and evaluate a datastructure and algorithms

suitable for serving large numbers of DNS records.
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Glossary of terms and

abbreviations

AXFR A DNS request for the full contents of a zone (cf. IXFR).

Authoritative Server A DNS server responsible for serving records from

an official replica of the zone (cf. Caching Resolver).

BIND Berkeley Internet Name Domain, a popular DNS implementation.

http://www.isc.org/sw/bind/

Caching Resolver A DNS server that fetches records from other servers

on behalf of its clients, and caches them for answering future quer-

ies. (cf. Authoritative Server).

ccTLD Country-code Top-Level Domain, e.g., fr, se.

http://www.iana.org/cctld/

CDF Cumulative density function: the probability of a variate being less

than or equal to a given value. CDFs shown in this document are

empirical; that is, they show the proportion of all samples seen that

are less than or equal to each value.

Closest Match The name in the DNS namespace which matches the most

labels of a query name. Used for finding the Source of Synthesis

(q.v.).

DLV DNSSEC Lookaside Validation: a method of distributing trusted DNS-

SEC keys.
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DNSSEC DNS Security Extensions: source authentication for DNS re-

cords.

DNS The Domain Name System.

EDNS Extension Mechanisms for DNS: the extra types, flags and options,

and larger UDP packet sizes added to the DNS in RFC 2671.

ENUM A mapping from E.164 telephone numbers onto domain names

ending in e164.arpa.

gTLD Generic Top-level Domain, e.g., com, info.

http://www.iana.org/gtld/gtld.htm

ICANN The Internet Corporation for Assigned Names and Numbers, cur-

rently responsible for delegating top-level domains and maintaining

lists of the numbers used in internet protocols.

http://www.icann.org/

IETF The Internet Engineering Task Force, the forum in which internet

standards are defined.

http://www.ietf.org/

IXFR A DNS request for all changes to a zone since a specified version

(cf. AXFR).

Master The primary authoritative server for a zone, where updates can

be made (cf. Slave).

MyDNS An authoritative DNS server which serves records from an SQL

database.

NOTIFY A DNS request intended to inform a slave server that a new ver-

sion of the zone is available at the master.

NSD Name Server Daemon, a fast authoritative DNS server.

http://www.nlnetlabs.nl/nsd/
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NSEC3 A proposed amendment to DNSSEC that will prevent DNS clients

from being able to extract the contents of an entire zone using a

series of negative queries.

RFCs “Requests For Comments”, a series of publications of the IETF, which

includes the definitions of internet protocols.

http://www.rfc-editor.org/

RIPE NCC The regional internet registry for Europe, the Middle East and

central Asia. The RIPE NCC performs a monthly count of hostnames

under some of the ccTLDs.

http://www.ripe.net/

RRSet The set of all RRs with the same name, class and type.

RR Resource Record. The unit of information stored in the DNS.

Slave A secondary authoritative server for a zone, which must synchron-

ize its replica of the zone with the master’s one.

SOA Start of Authority: a special record held at the top of every zone.

Source of Synthesis The wildcard record (if any) that is used to generate

records for an otherwise unsuccessful query.

Stub Resolver DNS software running on an internet host to submit quer-

ies to caching resolvers.

TLD Top-level domain. A domain with only one label, e.g., com, uk.

TSIG Transaction SIGnature: an authentication scheme for DNS mes-

sages, using symmetric cryptography.

TTL Time To Live, the length of time for which an RRSet may be cached.

UFP The UNS First Protocol, a pessimistic update propagation protocol

designed for name services.

UNS The Universal Name Service.
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1 Introduction

The DNS is a global nameservice that must satisfy many millions of re-

quests per second, while allowing distributed, delegated administration

and maintenance. In this dissertation, we discuss the performance re-

quirements of the DNS, and argue that the robustness and performance of

the DNS could be improved by moving towards a centralized architecture

while maintaining the existing client interface and delegated administra-

tion.

1.1 Background: before the DNS

Before the DNS, naming information for the internet was held in the

HOSTS.TXT file, a centrally-administered list of all known machines. This

was, in a sense, a distributed database: every host would download a

copy of the master file from an FTP server and use that copy for lookups

locally.

As the internet grew, and organizations moved from time-sharing com-

puters to networks of workstations, it was felt that both the administrat-

ive effort required to keep HOSTS.TXT up to date and the load on the FTP

server would become too great. The hierarchical, distributed design of

the DNS was intended to solve both of these problems [Moc87a]. The

namespace was partitioned into administrative regions, and each organ-

ization was made responsible for providing redundant servers to publish

its own section of the namespace.

At the time that the DNS was designed, several other networked name-

services were available. X.500 [CCITT05a] was developed at about the

1



2 CHAPTER 1. INTRODUCTION

same time and has some similar features (such as replication and re-

cursive lookups) as well as features that are not available in the DNS

(such as access control, customization and search functions). Grapev-

ine [BLNS82], which had been deployed at Xerox, included a reliable

asynchronous message transport, access control, and the ability to submit

updates at any replica and have them propagate to the others. The Global

Name Service [Lam86] offered PKI-based access control and dynamic up-

date propagation.

The DNS was deliberately built as a simple name resolution system.

Features available in other name services were not included, in the hope

that a simpler service would be easier to implement and therefore be

widely and quickly adopted [MD88]. Some of these features have later

been added [VTRB97, VGEW00, AAL+05a].

1.2 Delegation and distribution

When the DNS namespace was broken up, each administrative organiza-

tion was required to provide its own servers; the area of the namespace for

which each server was responsible exactly matched the area over which

the server’s operators had administrative control.

As the DNS scaled to more and more domains, the tie between ad-

ministrative delegation points and the distribution of the database has re-

mained. The result is that far more nameservers are in existence than are

needed for the task of publishing the database, and the benefit of having

many servers is reduced by each server’s publishing only the small subset

of the namespace over which its owners and operators have administrat-

ive authority. There are almost 400 million hosts on the internet† [ISC]

and approximately 1.4 million authoritative nameservers listed in the com,

net and org zone files. However, delegation records necessary for access

to any name in the DNS are published by only 114 of them‡ and a client

†All statistics in this document, unless otherwise stated, are as of March 2006.
‡There are only 13 “root” servers listed in the DNS, but several of those servers are

further distributed using BGP anycast [Abl03].



1.3. CONTRIBUTION OF THIS DISSERTATION 3

must talk to at least two servers to look up a new name (e.g., for the first

page on a new website).

It is possible to decouple the distribution of DNS data from the hier-

archy of authority [CMM02]. So long as the delegation of authority to

publish records is not altered, the mechanism used to publish them could

be replaced by any system with suitable characteristics. Specifically, the

publication mechanism does not need to be distributed as a matter of

principle — robustness, reachability and capacity are the main require-

ments of the DNS, and distribution is only necessary in so far as it helps

us achieve these goals.

In this dissertation we propose the idea of re-centralizing the pub-

lication mechanism of the DNS: replacing more than a million servers

with a single logically centralized database, served by a small number of

well-provisioned and well-placed servers, and all but eliminating the link

between domain ownership and domain publication.

The main advantage of such a scheme is that the clients’ lookups are

made much simpler: they can always get an answer from the first server

they contact. Since these lookups are by far the most common action

taken in the DNS, thousands of times more common than updates, making

them fast and reliable is very important. The associated cost of making

updates more complex is a bearable one, since the benefits include the

elimination of the many pitfalls of managing delegations, as well as better

service for the clients and more efficient use of machines and manpower.

1.3 Contribution of this dissertation

The thesis of this dissertation is that a centralized nameservice could re-

place the current DNS, and solve many of the current DNS’s difficulties.

The contribution of this dissertation is divided into three parts:

A set of requirements for any proposed replacement for the DNS. We

first discuss the architecture of the existing DNS in Chapters 2 and 3,

and then Chapter 4 quantitatively describes the service provided by
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the DNS, based on analysis of DNS traces and probes. We argue that

any replacement architecture for the DNS must be able to meet or

exceed that level of service, in addition to whatever other attractive

qualities it might have.

A centralized architecture for the DNS. We argue that there is too much

complexity in the DNS lookup protocol, and that this complexity

should be moved into the update protocol, by removing the delega-

tion mechanism and serving all DNS data from a few large, central

servers. In Chapter 5 we propose an architecture for a centralized

nameservice and discuss the advantages it would have over the cur-

rent system. Chapter 6 discusses how the distribution of updates

would work in the centralized service.

An implementation of a DNS server for large datasets. In Chapter 7

we describe the design and implementation of a DNS server inten-

ded to serve very large numbers of DNS records at high speeds.

Chapter 8 is a survey of related work in the area. We finish with a

summary of our conclusions and some suggestions for future work.

1.4 Previously published material

Some of the ideas presented in Chapter 5 of this dissertation were pub-

lished in The Main Name System: An exercise in centralized computing,

Tim Deegan, Jon Crowcroft and Andrew Warfield, ACM SIGCOMM CCR

35(5), pp. 5–13, October 2005.



2 The Domain Name System

In this chapter we lay out the design of the current domain name system,

as background for our later discussions of how it might be changed. This

chapter is intended to give the technical detail needed for later chapters:

as far as possible it consists of a description of the system, without any

comment on it. Chapter 3 will describe some of the issues affecting the

DNS and the motivation for changing it.

We do not describe every detail of the DNS. In particular, the rules for

the layout and handling of the different record types are omitted; refer-

ences describing them in detail are given in Appendix C.

When discussing the standards, we will not make a distinction between

various IETF levels of standardization [Bra96]: officially, only RFCs 1002,

1034 and 1035 are Standards, and RFC 3596 (AAAA) is a Draft Standard.

Most of the other RFCs cited here are Proposed Standards, and some are

Informational or Experimental, but this does not necessarily reflect their

standing in terms of acceptance or deployment.

2.1 Namespace

The DNS namespace is arranged as a tree (see Figure 2.1). Each edge of

the tree has a label of up to 63 eight-bit characters†. Labels are equival-

ent up to ASCII case conversion, so example and eXamPlE are the same

label [Eas06]. A domain name is a sequence of labels corresponding to

†Single-bit labels were also allowed [Cra99a], but they caused serious interoperabil-
ity problems with older software and were not considered useful enough to retain in the
standard [BDF+02].

5



6 CHAPTER 2. THE DOMAIN NAME SYSTEM

com extreme

external

example

www

    ns

*

Figure 2.1: DNS namespace tree

a path through the tree from the root [Moc87a, EB97, Cra99a]. Domain

names must be no more than 255 octets long, including an extra octet

for each label to encode its length. For comparing and sorting names,

a canonical order is defined, equivalent to a depth-first traversal of the

namespace tree†.

In this document, we use the normal text representation of domain

names, with the labels arranged lowest-first and separated by “.”; the

root of the tree is represented by a single “.”. For example, in Figure 2.1,

example is a label, and www.example.com. is a domain name. For readab-

ility, we will omit the trailing “.” of domain names.

The namespace is divided into zones for the purposes of administrative

control, database distribution and coherence control. A zone is a contigu-

ous subtree of the namespace, defined by cut points, where it is divided

from the zone above (its parent) and any zones below it (children). A

†Names are compared using a lexicographical order by label (right-to-left), labels
are compared in lexicographical order by character (left-to-right), and characters are
compared by converting them to lower-case and comparing their ASCII values, with
lower values coming before higher ones [AAL+05c].
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zone is usually referred to by the domain name at its head. For example,

the com zone in Figure 2.1 is a child of the root zone, and parent of the

example.com and external.com zones.

Data in the DNS are arranged in resource records (RRs), which are

identified by triples of domain name, class and type. All the RRs with a

given (name, class, type) triple form an RRSet†. An RR’s type specifies the

layout and meaning of the data within the RR; common types of naming

data include:

A An IPv4 address associated with this name.

AAAA An IPv6 address.

MX The name of a mail server which receives email for this do-

main, and a priority to rank it relative to other mail servers.

TXT A text string.

PTR Some other domain in the namespace (used for “reverse” look-

ups to map from an address back to a domain name).

The class field was designed to allow parallel namespaces to be supported,

containing naming information about different networks. In practice this

has not happened and the only class in use is INTERNET‡.

Names whose first (lowest) label is * are wildcard names: they are

used to generate RRSets automatically for other names. When a query is

made for a name that does not exist, if there is a matching wildcard name,

the query is answered using the RRSets from the wildcard name instead.

For any non-existent domain name, there is a rule for determining the

single possible wildcard that can match that name: following the name

from the root down through the namespace tree, stop at the node just

after the last label that does exist; if there is a *-labelled edge leading

down from that node, then the node reached by following that edge is the

wildcard to use [Lew06].

†Like most rules in the DNS, this has an exception: the RRSIG RRs used in DNSSEC
do not form RRSets, because they are conceptually a part of the RRSet they authenticate.

‡An exception to this is the BIND nameserver software, which will by default identify
some aspects of its configuration in response to TXT queries in the CHAOS class.
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2.2 Administration

The zone is the unit of administrative control in the DNS. The adminis-

trator of a zone has complete control over the namespace below the head

of the zone, including the RRSets that are associated with names in the

zone. By defining new cut points in the zone, the administrator can make

child zones, and delegate control over them to other principals.

The root zone is currently administered by the Internet Corporation

for Assigned Names and Numbers (ICANN) on behalf of the United States

Department of Commerce. ICANN occasionally defines new top-level do-

mains (TLDs) under the root node and delegates the corresponding zones

to registries, which are responsible for them. The distinction is not gener-

ally made between a TLD, the zone rooted at that TLD, and the registry

that administers the zone.

Most of the current TLDs are country-code TLDs (ccTLDs): one of these

is defined for each element in the ISO 3166-1 table of two-letter country

codes [ISO97] (and a few others), and the zone is typically delegated to

a registry specified by the country’s government [ICANN99]. The other

TLDs have no geographic meaning and are usually called generic TLDs

(gTLDs).

For historical reasons, in addition to us, the United States government

administers gov, mil and edu and reserves them for U.S. government, mil-

itary, and accredited educational establishments respectively. In its other

capacity as the allocator of IP addresses and protocol identifiers, ICANN

itself administers one other top-level domain, arpa, which contains infra-

structure data for the internet [Hus01].

Each TLD has its own rules or guidelines for how zones are allocated

below it — for example the com and org registries delegate sub-domains

almost on demand, whereas the museum registry only delegates zones to

museums and controls the names of its child zones carefully.
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1:  www.example.com IN A ?

2: www.example.com 
IN A ?

4:  www.example.com 
IN A ?

6:  www.example.com
IN A ?

Root server

.com server

example.com
server3: com IN 

NS ...

5:  example.com 
IN NS ...

7: www.example.com
IN A ...

8: www.example.com IN A ...

client

caching
resolver

Figure 2.2: DNS lookup mechanism.

2.3 Publication and lookup

Responsibility for publishing DNS RRSets lies with the administrator of

the zone in which the RRSets lie. Each zone is required to have at least

two servers that answer queries about the RRSets with names in that zone;

these servers are called authoritative for the zone. At each cut point, the

child zone is authoritative for all RRSets, but the parent zone’s servers also

hold an extra copy of the NS RRSet, which contains the names of the child

zone’s authoritative servers. A list of the servers that are authoritative for

the root is published by ICANN.

A caching resolver finds the answer to a query by starting with the root
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servers and following the chain of delegations until it finds the authorit-

ative servers for the zone the query is in. At each level it sends the query

to one of the servers; if the server is authoritative it will answer the query

directly, otherwise it will return the NS RRSet for the relevant child zone.

A client of the DNS typically has simple stub resolver software, which

knows about one or more caching resolvers and sends all queries to them.

For example, a query for the A RRSet of www.example.com is shown in

Figure 2.2:

1. A client sends a query for (www.example.com, INTERNET, A) to its

local caching resolver, (which we will assume for simplicity has an

empty cache).

2. The resolver sends the same to a server that is authoritative for the

root zone. It is configured with a list of those servers as published

by ICANN.

3. The com zone is delegated to its operator’s servers, so the root server

responds with an NS RRSet listing the authoritative servers for com.

4. The resolver sends the same query to a com server.

5. The com server responds with another NS RRSet, this time for the

next cut point, which is example.com.

6. The resolver sends the same query to an example.com server.

7. This server is authoritative for www.example.com, so it sends back

the A RRSet that it was asked for.

8. The caching resolver returns this answer to the client.

The caching resolver, as the name suggests, caches the RRSets it receives,

both to save time and effort repeating queries, and so that the servers

for the upper levels of the hierarchy aren’t contacted for every query in

a delegated zone. The time-to-live field (TTL) of each RRSet indicates to

clients how long they may cache the RRSet for, and is intended to control
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the trade-off between query rate and coherence: the higher the TTL, the

fewer requests clients will send, but the longer it will take for changes to

propagate to all caching resolvers.

In addition to the lookup protocol, the DNS standards define a protocol

for synchronizing zone data between the zone’s authoritative servers. One

server is designated the master server, and the others are slaves. Updates

to the zone are made at the master, either by directly editing its database

or by sending updates to it for approval. The slaves synchronize their

copies of the zone by occasionally asking the master for the the SOA RR

from the head of the zone. The SOA record contains a serial number; if the

serial number on the master is ahead of the one on the slave, the slave

asks for a copy of the new version of the zone (using an AXFR or zone

transfer request) or a list of the differences between the versions (using

an IXFR or incremental zone transfer request).

This protocol is not tied to the lookup protocol; any out-of-band mech-

anism for keeping the authoritative servers synchronized can be used, be-

cause the synchronization is entirely between machines controlled by the

zone administrator.

2.4 Wire protocol

Communication between machines in the DNS consists of exchanges of

messages. These messages have a standard format, which is shown in

Figure 2.3 [Moc87b, EB97, AAL+05a]. The fields and flags are defined

below. Messages are encapsulated in UDP packets or sent in series along

a TCP stream; in either case a nameserver is expected to listen for client

messages on port 53. Messages sent over UDP are by default limited to

512 octets; a machine wishing to send longer messages must either use

TCP or negotiate a longer payload length.

The message is made up of five sections. The first is a standard header

format, which describes the type of message and various other things,

including the sizes of the remaining sections. The remaining sections are

variable-length [Moc87b, EB97].
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Query ID QR Opcode RcodeAA TC RD RA 0

Number of requests Number of answer RRs

Number of authority RRs Number of additional RRs

AD CD

0 8 16 24 32

41 (”OPT”)

0

UDP payload size

Total length of options (which follow)

DNS Packet Header

EDNS OPT RR Header

Upper 8 bits of Rcode EDNS version DO 0    

Option code

Option payload length Option payload...

EDNS Option

Figure 2.3: DNS message header and EDNS extensions.

• The question section describes the RRSet being queried or updated.

• The answer section contains the requested RRSets in the response,

and in some cases also contains the answer to the query that a client

is expected to send next.

• The authority section contains details of the zone the response came

from.

• The additional records section can contain various other useful re-

cords, depending on the contents of the rest of the message.

The Extension Mechanisms for DNS (EDNS) [Vix99] define an updated

version of the DNS message format, extending the Rcode, label type, and

flag fields of the original DNS message, and adding a UDP payload length
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field and a version number. Rather than use a new header layout, the

extended fields are encapsulated in a special resource record and included

in the additional records section of an old-style message. A compliant

implementation must parse the additional records section of a message

before it can interpret the message’s header fields. The current message

format (that is, the original layout, extended with the special RR shown

in Figure 2.3) is known as EDNS0.

Operations: QUERY, NOTIFY and UPDATE

All protocol operations in the DNS are expressed as a request from one

machine to another, and at least one matching response. The meaning

of the request is defined by the opcode field, which has three possible

settings.

QUERY is the basic query-response mechanism, in addition to piggyback-

ing some other features (see below). The client sends a QUERY mes-

sage to the server containing, in the question section, the domain

name, type and class of the RRSet it is asking for. The server re-

sponds, echoing the question section and including the requested

RRSet, if it exists, in the answer section. The server also includes

some information about the zone in the authority section: if the

query was successful or the name was in a delegated child zone,

this is the NS RRSet of the zone head; if it was unsuccessful, it is

the SOA RR. The additional records section is filled in with some

more RRSets, which depend on the type of the queried RRSet —

for example, if the query was for an MX RRSet, which contains the

domain names of some mail servers, the server might include the IP

addresses associated with those names.

NOTIFY allows a master server to indicate to a slave server that the zone

contents have changed, by sending a NOTIFY request to the slave for

the name of the zone head [Vix96]. This lets slaves respond more

quickly to zone contents updates without having to poll more often.
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UPDATE allows a client to request that a server add, change or delete

an RRSet in its zone [VTRB97]. The client gives a list of precondi-

tions, stating which RRSets must exist or not exist before the change

should be accepted. The server responds using the Rcode field to in-

dicate that the update was successful, or why it was not.

Two other opcodes, an “inverse” query (IQUERY) and a server status re-

quest (STATUS), were defined, but they are not used. IQUERY has been

withdrawn [Law02] and the semantics of STATUS were never defined.

ID

The ID field is used to match requests to responses. Clients fill in the ID

field with a number that identifies the request being made, and servers

mirror the ID field in the response message.

Flags

There are six flag bits in the standard header and sixteen in the EDNS0

OPT record, of which the following are defined:

AA This response contains authoritative data (i.e. not cached).

TC This message was truncated to fit a UDP datagram.

RD Please perform recursive queries to answer this query.

RA This server is willing to perform recursive queries.

AD This message contains DNSSEC-authenticated records.

CD Do not perform DNSSEC validation on this request.

DO Send DNSSEC RRs in the response to this request. (Requires

EDNS0.)

Response codes

Five Rcodes were defined in the original protocol: one as a catch-all for

partial or complete success and four others to indicate different failure
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modes [Moc87b]. Five Rcodes were added for explaining why an up-

date failed [VTRB97]. EDNS0 added a version mismatch error [Vix99];

symmetric-key signatures add six more [VGEW00, Eas00].

2.5 Metadata and signalling

In addition to the RRSets containing naming data, the DNS has a number

of record types that are used to hold metadata about the namespace or to

carry signals from one machine to another, as described below.

Namespace metadata: NS, SOA, CNAME and DNAME

These four record types are used to mark the cut points between zones,

and to implement aliases.

SOA (Start of Authority) records identify zones and contain metadata

used for keeping replicas synchronized. Each zone has a single

SOA RR, which contains the name of the zone master, a contact

email address for the administrator, a serial number for the zone

and four timer settings. The timers tell the slave servers how often

they should refresh their copies of the zone contents, and tell cach-

ing resolvers how long they may cache negative replies for names in

the zone [And98].

NS RRSets mark zone boundaries: an NS RRSet contains the names of

the authoritative servers for the zone, and is served by the parent

zone’s servers as well as the child’s. All other RRs with that name

(except for DNSSEC digital signatures — see below) are served only

by the child’s servers. The NS RRSet should be the same regardless

of which server is asked, but this must be ensured out of band.

CNAME records are used to indicate aliases: a CNAME RR for a name

contains another domain name (the target), and indicates that any

queries for types other than CNAME at the first name should be asked

again using the target name.
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DNAME records have the same effect but apply to queries for all names

below the owner name in the namespace: thus a CNAME RR for

mail.example.com containing the name mail.isp.net would cause

a query for the A RRSet of mail.example.com to be reissued as a

query for the A RRSet of mail.isp.net. A DNAME RR with the same

contents, on the other hand, would have no effect on that query but

would cause a query for the A RRSet of imap.mail.example.com to

be reissued as a query for imap.mail.isp.net [Cra99b].

Unlike wildcard processing, which is done entirely at the server, this

query reissuing is done by the caching resolver on receipt of the

CNAME or DNAME RR. However, servers do need to handle these

aliases: they must know to issue them in response to queries for

other types. Also, if they know the answer to the reissued query

that the resolver ought to send, they are expected to include it in

the response with the CNAME or DNAME RR. This saves the latency

of another query/response pair.

Protocol elements: AXFR, IXFR, OPT, TSIG, TKEY, ANY and

NONE

There are also a number of record types for which records do not exist at

all in the namespace; they are used to piggyback other kinds of protocol

data on top of queries and responses.

AXFR and IXFR queries are only valid when the name being queried is the

head of a zone. The server responds to an AXFR query by sending

every RRSet in the zone; this allows slave servers for a zone to ac-

quire up-to-date copies of the zone contents. An IXFR query [Oht96]

is similar, but the client sends with it the SOA RR from a version of

the zone that it already has access to, and the response is a list of the

differences between that version of the zone and the current one.

OPT records are used to signal the use of EDNS. An OPT record is included

in the additional records section of a query or response to signal that
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EDNS features are available or required.

TSIG and TKEY are used for adding symmetric-key signatures to messages,

and are discussed below.

ANY is a wildcard type, used in queries to ask for all records at a given

name and class.

NONE is the type used in update messages to assert that a domain name

has no records of any type associated with it.

There are equivalent ANY and NONE classes that serve the same purposes

for the class field.

2.6 Additional RRSets in responses

Answers to DNS queries must contain extra RRs as well as the ones asked

for. These depend on the type of the records being queried, as well as

server configuration and the contents of the response records themselves.

They usually require the server to look in more than one place in the

namespace to answer a query properly. Some of the secondary lookups

required in an authoritative server after a successful lookup are as follows.

1. The NS RRSet of the origin of the zone, in the authority section.

2. In a DNSSEC-secured zone, the RRSIG records that hold signatures

for the other RRSets in the message, and (optionally) the DNSKEY

RRSet of the zone origin.

3. If there is a CNAME RR for this name and class, the answer to a

lookup of the same class and type using the target of the CNAME.

4. (Optionally) the SOA RR of the zone origin.

For an unsuccessful lookup, the server must find:
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1. If the queried name is in a part of the namespace covered by a

DNAME RR, the answer to a lookup of the same class and type using

the appropriate substitution from the DNAME.

2. If the name is in a zone that is delegated away from this server, the

NS RRSet of the closest enclosing delegation known by this server.

3. The appropriate wildcard name.

4. In a DNSSEC-secured zone, the NSEC RR that covers the gap in

the zone where the name would have been, and enough others to

demonstrate that there is no applicable wildcard name.

5. The SOA RR for the zone origin.

For both successful and unsuccessful queries, the server must do further

lookups for some of the domain names that appeared in the contents of

records in the response so far. For some types, including NS and MX, the

server must extract domain names from the contents of the original reply

and include any records of type A or AAAA that those names have, on the

assumption that the querier is about to ask for them.

2.7 Security

The DNS was not designed with any security features beyond a belief

that a record received from an authoritative server should be trusted. No

additional measures were taken to secure the underlying UDP and TCP

communications, or to check that the data returned from a zone’s serv-

ers matched the specification given by the zone’s administrators. It was

assumed that such security features could easily be added later. Some of

them have since been deployed, and some are still in development.

End-to-end authentication

DNSSEC [AAL+05a, AAL+05c, AAL+05b] introduces a public-key signa-

ture system for the DNS. DNSSEC signing keys are associated with zones.
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A signature is calculated off-line for each RRSet in a secured zone, and

recorded in an RRSIG record. The RRSIG record is stored alongside the ori-

ginal record and sent with it in response to queries. The client can verify

the signature and be sure that the record set is as intended by the admin-

istrator, or at least by some holder of the signing key. In addition, the

gaps between RRSets in the zones are described using NSEC RRs, which

are also signed. This prevents an attacker from denying the existence of

an RRSet that does in fact exist, because he cannot forge a signed NSEC

RR that covers the correct name. The server needs to be able to find the

appropriate NSEC RR when it receives a query for a non-existent name in

a signed zone; this involves finding the closest preceding name (in the

canonical order) that does have records.

Signing keys are arranged in a tree of trust that follows the namespace.

At each cut point, the child zone’s public keys are signed by the parent

zone’s keys†. The chain of signatures must eventually end with a key

that is known to the client. The intention is that the root zone should be

signed and its key-signing public key published, although this has not yet

happened.

Hop-by-hop authentication

In order to guard against man-in-the-middle attacks on the communica-

tions between servers, a symmetric-key cryptographic transaction signa-

ture was introduced [VGEW00]. The sending machine can sign its com-

munications and include the signature as a TSIG RR in the message, allow-

ing the receiving machine to be sure that the data came from a machine

that possesses the secret key.

TSIG security is more widely deployed than DNSSEC; it is often used

between the authoritative servers of a zone, to protect the zone trans-

fers between master and slaves. A different secret key is used between

the master and each of its slaves, and the keys are agreed out of band.

†For operational reasons, each zone has a key-signing key that is intended to change
infrequently, and is used to sign the keys that actually sign RRSets; see [AAL+05c] for
details.



20 CHAPTER 2. THE DOMAIN NAME SYSTEM

Because a key must be shared between every pair of communicating ma-

chines, it is not suitable for securing client queries unless the client base

for a server is very tightly controlled. The TKEY record type and its as-

sociated processing rules [Eas00, KGG+03] allow a client and server to

establish a session key for use with TSIG but they must already be able

to authenticate each other in some other way. The security protocol ne-

gotiations are piggybacked on an exchange of TKEY RRs between the two

ends.

Cache poisoning

Another vulnerability in the DNS arises from the way caching resolvers

use cached NS RRSets to shortcut the resolution path for zones they have

visited before. A malicious DNS server, as part of its response to some

query, could include a spurious NS RRSet that claimed that the victim zone

was delegated to servers under malicious control — for example, along

with the A records for www.malicious.com the malicious server sends an

NS RRSet for victim.com pointing to ns.malicious.com. Later, queries

for names in victim.com will be sent to the malicious server instead of

the proper servers. In this way the zone can be hijacked without having

to attack the servers for the zone or any of its parents†.

Newer caching resolvers only accept RRSets that come from servers

that are authoritative for the zone in which the RRSet falls (or in some

circumstances from a parent zone), to prevent this kind of poisoning. Vari-

ants on the attack can still be made by spoofing response packets from the

authoritative servers, or by subverting the servers that serve the names of

a zone’s authoritative servers (rather than the authoritative servers them-

selves), in order to hijack the process one step earlier [RS05].

†A list of servers known to be issuing poisoned records is available from the Meas-
urement Factory’s DNS survey, at
http://dns.measurement-factory.com/surveys/poisoners.html.
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2.8 Extensions

While the main use of the DNS remains the serving of a coherent database

of naming information, there are some servers that do more than that. For

example, load-balancing and server selection for content distribution net-

works is sometimes done at the DNS level: the result of a DNS query in

a load-balanced zone depends on the IP address of the querier, automat-

ically directing each client to the “best” server. The choice of server is

typically based on an estimate of distance, with a lookup table of which

servers are closest to each address block; it could also be based on feed-

back from the servers about their current load [Cis99]. Using the DNS

for server selection provides poor responsiveness to change (because of

clients that ignore TTLs [PAS+04]) and the use of DNS caches introduces

errors into the choice of best server for each client because a user’s DNS

cache is not necessarily a useful estimate for that user’s actual position in

the network [PHL03]. However, it does usually avoid the worst choices.

The DNS is still under active development. New record types are being

defined to support services as they are deployed on the internet [WS05,

SLG06, NL05, Mes05, Mor05, dL05]. New record types can require more

functionality at the server, as there are rules governing which extra in-

formation a server should supply with each record type. Authentication

mechanisms for DNS records [AAL+05c] are being deployed slowly, but

new schemes are being developed to help speed this deployment [AW06],

and to allow administrators to secure their zones without revealing the

entire contents of their zones [LSA05].

2.9 Summary

We have described the design and operation of the Domain Name System.

In the next chapter we will consider some of the issues experienced with

the DNS and motivation for making changes to it.





3 Motivation

Now that we have described the mechanisms of the DNS, we can discuss

the reasons why we would want to consider changing it. In this chapter

we will look at some of the issues that have been reported with the DNS,

and argue that the distributed nature of the DNS lookup protocol is re-

sponsible for many of them.

Lookup latency

Resolving names in the DNS can take long enough to cause noticeable

delays in interactive applications [HA00, CK00]. A resolver may need to

talk to several authoritative servers to answer a single question, and each

additional server adds network delays, as well as the possibility of conges-

tion, overloaded servers, and failure. Generally, top-level domain (TLD)

servers can be expected to be well placed and geographically diverse;

lower-level zones are often not so lucky. This is made worse by the long

timeouts in resolvers and stubs when errors are encountered [PPPW04].

In addition, high load at the caching resolvers can cause delays.

Update latency

The latency of updates in the DNS is governed by the “time to live” (TTL)

field of the record being updated. For planned updates, the TTL can be

reduced in advance, allowing a speedy propagation of the update in ex-

change for briefly increased traffic. For unplanned updates (e.g., in re-

sponse to an outage or attack) the old record may remain in caches until

its TTL expires.

23
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This timeout-based caching mechanism is not a good fit with the pat-

terns of change in the data served. Many DNS records are stable over

months, but have TTLs of a few hours. At this timescale the TTL is effect-

ively an indicator of how quickly updates should propagate through the

network, but it is used by caches as if it were an indicator of how soon

the record is likely to change. This generates unnecessary queries, and in-

dicates that a “push” mechanism for updates would be more appropriate

for these parts of the DNS. Jung et al. [JSBM01] show that, based on TCP

connections seen in traces, 80% of the effectiveness of TTL-based caching

is gained with TTLs of only 15 minutes, even though the data may be

static for much longer than that.

Administrative difficulties

Even a properly-formed DNS zone can cause problems for its owners, and

for other DNS users, if the delegation from the parent zone is not prop-

erly handled. The most common delegation errors are caused by a lack

of communication between the zone’s administrators, their ISPs, and the

administrators of the parent zone. In 2004, 15% of forward zone del-

egations from TLDs were “lame” in at least one server [PXL+04] (i.e.,

a server that did not serve the zone was announced as doing so by the

parent zone). Servers publishing out-of-date zone data after a zone has

been re-delegated away from them also cause problems. Circular glue de-

pendencies, which cause delays in resolving the zone from a cold cache

and reduce the number of useful servers available†, affected about 5% of

zones [PXL+04]. These errors are directly connected to the way the DNS

is distributed along administrative boundaries.

In addition to the risks involved in preparing the contents of a zone,

the software used on nameservers is complicated and requires some ex-

pertise to configure, secure and maintain properly. This expertise is not in

evidence at all nameservers‡.

†See http://cr.yp.to/djbdns/notes.html#gluelessness
‡For a survey of configuration problems found on public nameservers, see

http://www.menandmice.com/6000/6000 domain health.html
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Misconfiguration of clients and resolvers causes problems too: it is

responsible for a large fraction of the load on the root servers [WF03,

Wes04]. This has been a problem with the DNS for some time [MD88]

and, despite efforts to educate administrators, the situation is not improv-

ing.

Vulnerability to denial of service

Redundancy is built by replication of data, but this happens multiple times

per name — an organization must rely not only on its own nameservers

being operational, but also on the nameservers for every level above it in

the hierarchy. Again, this is caused by the distribution model.

There have been distributed denial-of-service attacks on the root and

TLD servers in the past. Some of them have been successful in causing

delays and losses [VSS02], although anecdotal evidence suggests that to

date, human error has been much more effective than malice in causing

outages at the upper levels of the DNS, and care is taken in deploying

root servers that they can survive large spikes in load [BKKP00]. Lower-

level zones, which typically do not have the same levels of funding and

expertise available to them, are more vulnerable to attack. Many zones

are served by two nameservers that are on the same LAN, or even the

same machine [PXL+04], although the standard requires each zone to

have redundant servers.

Lack of authentication

The current DNS relies almost entirely on IP addresses to authenticate re-

sponses: any attacker capable of intercepting traffic between a client and

a server can inject false information. Mechanisms have been developed

to use shared-key and public-key cryptography to provide stronger au-

thentication of replies, but although TSIG [VGEW00] is now commonly

used to protect zone transfers, DNSSEC [AAL+05a] is not being deployed

quickly — indeed the details of the protocol are still being debated after
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ten years of development. It is also a complex addition to an already

complex protocol, so there are relatively few implementations.

Implementation difficulties

The wire protocol of the DNS is not easy to implement correctly†. In par-

ticular, the “compression” algorithm, where common suffixes in a packet

can be merged by using pointers from one name to another, is a common

cause of error. Also, as we shall see in Chapters 5 and 7, the way that

the tree of the namespace is used restricts the implementation options for

DNS servers. In particular, DNSSEC requires that a server be able to find

the record that precedes a query name when the query name is not in the

database. It would be unfair to call these architectural problems; most

internet protocols have similar pitfalls and difficulties.

3.1 An observation about complexity

The DNS has two protocols, one for publishing records and one for looking

them up.

The lookup mechanism of the DNS is a complex one: a caching re-

solver acting on behalf of a client interacts with multiple authoritative

servers in order to locate the record being queried. Even an entirely suc-

cessful query might travel from machine to machine six to ten times before

it finally returns to the stub resolver that generated it, and will rely on the

correct configuration and functioning of machines other than the client

and the server holding the record. Each network hop is an opportunity

for delay or failure, and each machine involved is a possible source of

error, delay or failure. The complexity of this lookup architecture is re-

sponsible for some of the observed difficulties with the DNS: in particular

for the latency issues associated with retry timeouts, and the vulnerability

of the entire service to attacks on the root and TLD servers.

†Even now, DNS implementation errors are regularly reported. See, for example,
CVE-2003-0432, CVE-2004-0445, CVE-2005-0034 and CVE-2006-0351.
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The publication of records in the DNS is more straightforward. The

zone administrator sends the record to the primary authoritative server,

and the secondary servers synchronize themselves with the primary. This

process involves only those machines directly responsible for serving the

record, all of which are under the administrator’s control; it does not rely

on the configuration of other zones or their servers.

There are also differences in how the two protocols are used:

• Lookups are several thousand times more frequent than updates,

and clients outnumber servers by more than two hundred to one.

Typically a failed or delayed lookup will cause failure or delay in a

higher-level protocol interaction, which may itself be delay-sensitive:

for example, delays of more than a few seconds are considered prob-

lematic in web site downloads [BBK00].

Figure 3.1: SOA refresh timers (from zones seen by RIPE and Adam)

• Updates are more tolerant of delay: typically a ten-second delay

would not be noticed when updating a DNS record. Figure 3.1
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shows that the vast majority of zones have refresh timers set longer

than five minutes. (Although this doesn’t take DNS NOTIFY into ac-

count, it is an indication of the sort of timescale that is acceptable

for zone consistency. In zones that use NOTIFY, if a notification is

lost between master and slave, BIND 9 waits for 15 seconds before

re-sending.) In addition, DNS updates can be pre-loaded in a way

that lookups cannot: some servers allow administrators to load up-

dates into the DNS before they are needed, timestamped with when

they are to come into effect.

This leads us to an observation about the architecture of the DNS. A dis-

tributed system on the scale of the DNS must have some complexity, and

wherever the complexity is, there are risks of failure and delay. We would

like the complexity to be in the place where the failure and delay can be

best tolerated, and this is not the case in the DNS. If DNS lookups can

be made simpler — even at the cost of making updates more complex —

the overall behaviour of the system will be improved. In other words we

believe:

The complexity of the DNS should be moved from the lookup

protocol into the update protocol.

The current DNS is made up of two halves: simple centralized updates

and complex distributed lookups. A system using centralized lookups and

distributed updates would be a better match for the requirements. Ideally,

client caches should be able to send queries to any DNS server and have

that server return the answer immediately; the hard work is done when

an update is made, replicating the record at every server.

This would solve the problems of high latency, as well as many of the

administrative difficulties associated with the delegation of zones between

servers. The other problems discussed above are either political or re-

lated to the wire protocol, and outside the scope of this dissertation. We

deliberately do not attempt to resolve any of the complex legal and polit-

ical issues of zone ownership and control; and since any improved DNS

architecture must be backwards-compatible with the millions of clients
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deployed in the internet, we do not address the wire protocol except to

require that the new service should support it.

In Chapter 5, we will discuss the design of a centralized nameser-

vice. First, however, we will examine the size and performance of the

current DNS, in order to specify the minimum requirements which any

new nameservice must meet.





4 Quantifying the DNS

The first question we must ask when designing a distributed lookup sys-

tem is: what data will we be serving? How is it organized, and what is

the expected load of queries? In this chapter we will analyse measure-

ments of the current DNS, and distil a concise set of requirements for our

replacement system.

4.1 Sources of data

First, we will describe the various data sets which we will use. Some

of these are existing data from other DNS measurement projects. Some

(in particular the Adam zone files and the update probe queries) are the

results of measurement probes made specifically for this project.

The Adam zone transfers

In June and July of 2004, we gathered data on the contents of the DNS by

recursively requesting full copies of all zones under com, net, org, info

and coop. This probe took about six weeks in all. We found that 23% of

zones had at least one server that responded to these zone transfer (AXFR)

requests, giving us 8.5 million zones.

The Adam probe used a set of Bloom filters to decide which nameserv-

ers were consistently denying zone transfers, and did not send any more

queries to those servers. Altogether, the probe made 8.5 million successful

zone transfer queries and 6.7 million unsuccessful ones.

31
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We took several precautions to make it easy for server administrators

to reassure themselves that the queries were not malicious.

• A web page was published giving details of what the probe was do-

ing and why, and how to contact us about it if it seemed to be mis-

behaving.

• All queries came from a dedicated IP address, with a PTR record in-

dicating that this was a DNS probe, and TXT records pointing to the

project website. No other outbound connections were made from

this IP address.

• A web server was run on the probe’s IP address, which redirected all

queries to the project website.

• People who might receive queries about it — departmental and uni-

versity network administrators and the local CERT — were consul-

ted in advance. They could then answer any queries by pointing to

the website and forwarding any further questions or demands to us.

In total, not counting people who contacted administrators or CERTs and

were content once they knew what the probe was doing, we received ten

demands that we stop querying particular addresses or net blocks, and

eight offers of assistance from administrators who had whitelisted us.

The RIPE region hostcount

Similar data for 90 European ccTLDs were provided by the RIPE NCC,

from their monthly hostcount project [RIPE]. The RIPE hostcount is a

well-established project, and major ISPs have been lobbied to allow zone

transfers to RIPE’s local collection points: for example, the collectors

successfully transferred 50% of zones (a little over 10 million) from 90

ccTLDs in April 2004. Our analysis below is based on that dataset.
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The ISC internet domain survey

The Internet Systems Consortium (ISC)’s quarterly internet domain sur-

vey [ISC] is a list of all the PTR records for assigned IPv4 addresses. It

is gathered by recursive zone-transfers of the in-addr.arpa zone. Where

zone transfers are not available, the zone is enumerated by querying for

every address in an assigned network. It does not contain any inform-

ation other than address-to-name mappings, but it does contain records

from zones whose administrators refuse to allow zone transfers. The ISC

probe saw 394 million PTR records in January 2006.

Query traces

We also used two traces of DNS queries taken at academic nameservers.

The first was taken at an authoritative nameserver in University College,

London in August 2004. It contains almost 600,000 queries seen over

4 and a half hours. The server is authoritative for various UK academic

zones and reverse lookups.

The second was taken in the University of Cambridge Computer Labor-

atory, at a caching resolver that serves about a third of all DNS requests

from a department with 250 researchers and staff. This server forwards

all cache misses to a second level cache in the university’s network. The

trace was taken over 13 days in August 2004, and contains 2.5 million

client queries. The server itself sent 1.3 million queries for records that

were not cached.

Update probes

In December 2005, we probed two sets of public RRSets to see how often

they changed. We sampled RRSets from four data sources: the Adam and

RIPE probes, the ISC probes, and the University of Cambridge query trace.

We removed those that were no longer resolvable, and then queried the

remaining RRSets every four hours for a period of four weeks. We did not
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cache the results, but queried all the authoritative servers for each record

each time. The results of the probe are discussed below.

In contrast to the zone-transfers of the Adam probe, these were normal

UDP queries, and were repeated every four hours regardless of the previ-

ous responses. We have so far received no enquiries of any kind about the

query traffic generated by this probe.

4.2 Contents

Number of RRs

The Adam dataset contains 86.9 million RRs in 8.5 million zones. If the

zones returned are representative of the gTLDs generally, we can estimate

that there are about 371 million RRs under the gTLDs. The RIPE data

contains 186 million RRs in 9.8 million zones, giving us an estimate of

another 371 million RRs under the RIPE-area ccTLDs. There are also

another 158 ccTLDs not covered by the RIPE count. In the output of the

ISC probe, those ccTLDs appear only 81% as often as the RIPE-area ones

in the contents of PTR records. Using this as a guide to their relative

sizes, we can then estimate that the non-RIPE ccTLDs contain 304 million

RRs. This gives us a total of 1.05 billion RRs in the summer of 2004.

Multiplying by the increase in the number of hosts since then, we get an

estimate of 1.45 billion for January 2006.

In January 2006 the ISC survey found that there were about 395 mil-

lion IP addresses that have PTR records registered under in-addr.arpa.

This gives us a total estimate of about 1.8 billion RRs. That is roughly

4.6 RRs per host, or about 2–3 per internet user, depending on which

estimate we take for the user population. For example, the CIA World

Factbook [CIA05] estimates that there are 604 million users, but market-

research firms often claim more than 900 million.
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Figure 4.1: Distribution of popular record types in Adam data.
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Figure 4.2: Distribution of popular record types in RIPE data.
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Types of RRs

Figure 4.1 shows the proportion of each type of RR in the Adam dataset.

In total, 41 record types were seen, but the five types shown represent

more than 99% of the records. Figure 4.2 shows the distribution for the

RIPE dataset. MX and NS RRs are markedly more popular in the RIPE

dataset. This might reflect a class of more complex zones that allow zone

transfers to RIPE but do not normally allow zone transfers, as well as

different usage patterns under the ccTLDs.
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Figure 4.3: CDFs of RRSet sizes in Adam and RIPE data.

Figure 4.3 shows the empirical cumulative density functions (CDFs) of

RRSet sizes in the Adam and RIPE data sets. The average RRSet size over

both data sets is 1.2279 RRs (with 95% confidence within ±0.00051).
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Number of names

The Adam probes contain 45.4 million unique record-owning names, an

average of 1.9 RRs per name (that is, the average number of RRs in all

RRSets of any type that are indexed under that name). The RIPE probes

contain 70.4 million names, an average of 5.2 RRs per name. (The RIPE

data has higher number of NS and MX RRs, and larger RRSets.) The re-

verse records in the ISC traces contain only one record per name.

Zone sizes
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Figure 4.4: CDFs of zone sizes in Adam and RIPE data.

Figure 4.4 shows the CDFs of zone sizes in the Adam and RIPE data

sets. For both data sets, most zones have between five and ten records.

Since a valid delegation ought to have at least three meta-RRs (one SOA

and two NS) this represents two to seven records of useful data.

TTLs

Figure 4.5 shows a cumulative distribution function of the TTLs of re-

cords in the Adam and RIPE datasets. Most TTLs are between one hour

and one day. The large jump at one hour corresponds to the similar find-

ings by Mockapetris and Dunlap, which they attribute to the way people

read the standards: “Sample TTL values which mapped to an hour were
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always copied; text that said the values should be a few days was ig-

nored” [MD88]. The second jump at one day shows that perhaps the text

is not being ignored as much any more.

About 1.7% of RIPE records and 0.6% of Adam records have TTLs of

less than a minute. Since very short TTLs are only useful for dynamically

generated records, such as those used in load-balancing schemes, they

are likely to be underrepresented here. Less than 1% of records have

TTLs longer than 1 week; many DNS caches will not cache records for

longer than a week in any case [EB97].
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Figure 4.5: CDFs of TTL settings in Adam and RIPE data.

4.3 Updates

Previous work says very little about the rate at which RRSets change. DNS

measurement work does not cover it because it is not important to the

mechanism of DNS lookups (update traffic is handled privately between

authorities and only TTL has any effect on lookup traffic), and because
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it is not easily visible in trace data. Zone transfers can be seen between

servers but (at least where incremental transfers are not yet in use) do

not give a good idea of how much of a zone has changed.

Cohen and Kaplan [CK01] saw 0.25–0.5% of RRSets change at least

daily and fewer than 0.1% change hourly. This is equivalent to about 380

updates per second across the entire DNS. They also say that 97–98% of

records did not change at all, although they do not say how long their

probe sequence lasted. Their sample set was the A RRSets of a list of

webservers taken from a large and busy web cache.

LaFlamme and Levine [LL04] report that the daily changes to the com,

net and org TLD zones come to less than 500 KB per day, which is about

6600 RRSet changes per day.

Figure 4.6 shows the change history of the RRSets seen under the TLD

for Ireland by the RIPE recursive-transfer tool. For each month it gives

the percentage of all RRSets that were updated (including creation and

deletion). It shows that the majority of records seen by the RIPE probe
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stay the same over a timescale of months: in any given month we could

expect 75–85% of the RRSets to be unchanged.

This graph does not include reverse zones or those dynamic zones that

do not allow zone transfers: the RIPE probe sees about half of the forward

zones under ie. Also it does not show how often RRSets change over a

month, only whether they changed at all over that period.

One problem with the data given above is that it is selective: the RIPE

data almost certainly excludes highly dynamic and automatically gener-

ated zones; the TLD update rate only includes whole zones being deleg-

ated or changing servers; and Cohen and others select their RRSets from

the popular lookups of just one application, so do not see DNS blacklists,

reverse lookups, ENUM records, or any other record types.

Update probes

In order to get a more representative view of the way that records change,

we sampled records from our various data sets and probed them regularly

to look for changes. We selected 1,000 RRSets from the RIPE and Adam

zonefiles, the ISC reverse data and the queries seen in the University of

Cambridge DNS trace. We removed those records that no longer existed,

leaving us with 3,000 records. We then queried each one every four hours

over four weeks.

On analysing the data, we noticed several ways in which RRSets can

appear to change from probe to probe, without actually having changed

at the servers.

Variations in TTL: Some zones were lame in one or more servers; that

is, there were servers that were supposed to be serving the zone

from authoritative data, but were not configured to do so. Of those

servers, some were serving cached records obtained from the other

servers at some point in the past. As a result, the TTLs of the answers

seemed to vary over time, and to depend on which server was asked.

Although these responses were usually marked as cached data, in
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some cases they were marked as authoritative, which made them

harder to diagnose.

One variant on this occurred when the zone was entirely lame, but

the RRSet being queried for was the NS RRSet for the zone head. If

any of the servers listed in the NS RRSet was also an open caching

resolver, it could return a cached copy of the NS RRSet, which it had

obtained from the parent zone.

Another version arose when following CNAME records: if the au-

thoritative server was also a caching resolver it would return the

CNAME RR and also its cached copy of the RRSet from the CNAME’s

target domain. Since the second RR was served from cache, its TTL

would vary from query to query. We note that this does not involve

any misconfiguration at the server, only the choice to allow recurs-

ive and cached data to be served from a public-facing server. (For

various operational reasons this is unwise, but it is allowed by the

standards, and is a common configuration†.)

Inconsistent data: Sometimes the various servers for a zone were serving

different versions of the zone. Simple queries for the RRSet would

appear to change depending on which server was asked. In our

probes we asked every authoritative server, so we saw the union of

all data sets. However, if some servers were temporarily unreach-

able, this set would appear to change.

In an extreme case, we saw one ISP that had five nameservers, each

serving a single record, different from the other servers, but consist-

ent over time.

N-of-M: Some RRSets had large numbers of records, and their servers

would respond with a subset of the total each time they were asked.

While we suspect these changes did not reflect actual changes in

configuration, we could not be sure that there wasn’t some active

†This configuration was seen at over 75% of authoritative servers in
http://dns.measurement-factory.com/surveys/sum1.html
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load-balancing behind the changes, so have classed these RRSets as

“dynamically generated”.

We detected five records that were clearly dynamically generated: they

changed each time the question was asked, and had low TTLs. It would

be incorrect to think of this behaviour as a series of frequent updates to

an RRSet. Rather, it is a special case and must be considered separately.
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Figure 4.7: Updates detected by the probes.

Figure 4.7 shows the times at which we detected updates, with the

updates broken down into those that only changed an SOA serial number,

those that only changed the TTL of an RRSet, and all other updates.

Table 4.1 summarizes the results of the probes. Weighting the Adam,

ISC and RIPE rates by the amount of data they represent, we get an av-

erage of 0.0063 updates per RRSet per day. This agrees roughly with

Figure 4.6, and is equivalent to a rate of about 107 per second over the

entire DNS.

The rate of change seen in records from the trace is not directly com-

parable with that seen in the other three samples, since the data sets are
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Dataset Adam ISC RIPE Trace

Total RRSets 731 486 898 885

Inconsistent-TTL 8 7 0 36

Inconsistent-data 2 1 1 4

Dynamic/N-of-M 1 0 0 4

RRSets that changed 21 8 17 36

Total changes seen 262 8 126 55

Changes per RRSet per day 0.013 0.00061 0.0052 0.0023

Table 4.1: Results of the update probes.

not independent, but it is reassuring to see that they are of the same order

of magnitude. Our figure is lower than the rate observed in [CK01] for

the popular A records. However, that measurement did not distinguish

between dynamically generated records and updates to static ones.

Figure 4.8 shows the overall distribution of changes by RRSet: most

RRSets that changed did so only once over the period of the probes. All

the RRsets with more then sixteen changes were SOA RRs, which changed

only in their serial numbers.

4.4 Queries

Each root server handles about 8,000–11,000 queries per second [Wes04,

LHFc03], so at a rough estimate the total load across the root servers is

of the order of 100,000–150,000 queries per second†. Root servers are

provisioned to handle at least three times their peak load [BKKP00]. The

load at the gtld-servers, which serve com and net, is about the same.

The total load across all authoritative servers is harder to estimate; in

1992, one third of all DNS queries seen on the NSFnet were to the root

servers [DOK92]. Adding the gtld-server query rate to the root-server rate

(in 1992 the root server also served the gTLDs), we arrive at an estimate

of 600,000–900,000 queries per second. This is an average rate of one

query every 11 minutes for each host on the internet.

†Up to 70% of those queries are repeat queries caused by misconfigured clients,
caches, firewalls and routers.
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Figure 4.8: Histogram of number of changes seen per RRSet.

Name resolution at PlanetLab nodes completes in less than 100ms

for approximately 85% of queries, and less than 10ms for about 75%

of queries [PWPP04]. The mean lookup latency has been measured at

237ms [PWPP04] and 382ms [RS04]. The mean is dominated by the few

high-latency lookups: the median is only about 40ms [CMM02, RS04].

These numbers include both the delays and benefits of local caching re-

solvers.

The latency of lookups to the root servers, measured over 27 days

in December 2004 from a hosting centre in the UK, are summarized in

Figure 4.9. For each server, we show the mean, a 95% confidence inter-

val around the mean, and the median of the latency of queries. 0.05%

of queries went unanswered, either because a UDP packet was lost or

the server was overloaded; these are treated as having a latency of 5

seconds (the default timeout). The point labelled “All” gives the mean

and median across all servers, as an estimate of the latency observed

by a client that selects a server at random (e.g., dnscache) rather than
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attempting to choose a “good” server as suggested in RFC 1034 (e.g.,

BIND) [Moc87a, WFBc04].
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Figure 4.9: Latency of lookups to the root servers (as seen from the UK).

4.5 Availability

Because so many internet services require the DNS to be working, it is

a requirement that the service should be resilient to failures in its com-

ponents. It must also be resilient enough to withstand denial-of-service

attacks. However, it need not be robust against attacks that would disable

the underlying network or render it unusable for higher-level protocols.

Park et al. [PPPW04] measured availability of DNS name resolution at

99%. The probes used in the update detection confirm this: they were

able to find an answer 99.25% of the time.

It is hard to define precisely what this means as a specification for the

system without a full understanding of the quantity and quality of attack

traffic directed against the service, and collateral damage from attacks on
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other services. Unfortunately, due to the distributed nature of the DNS,

we don’t have a good idea of the overall attack traffic (and even if we did,

the attack patterns against a new kind of DNS would be different).

4.6 Requirements for a DNS replacement

In this section we summarize a set of minimum requirements for the DNS,

as a benchmark for measuring any new naming system that is proposed as

a replacement for it. Any such system should be able to meet this level of

service, or have an argument for why the users of the internet will accept

a degradation in name service.

Namespace. The service must support the tree-of-labels namespace of

the DNS, including wildcards and aliasing, and the (name, class,

type) indexing of data. (§2.1)

Datatypes. It must support the existing data types and their special hand-

ling rules. (Appendix C)

Database size. It must support a database of at least 1.8 billion resource

records. (§4.2)

Administrative controls. It must provide for delegation of subtrees of

the namespace to different administrative authorities, and for the

current system of registry-registrar relationships. (§2.2)

Query rate. It must support an average query load of at least 900,000

queries per second and a peak load of three times that level. (§4.4)

Query latency. The mean lookup latency should be no worse than 382ms,

and the median no worse than 40ms (including caching). (§4.4)

Updates. The administrator of a zone must be able to make updates to

the zone contents. The service must support an average update

rate of at least 0.0063 updates per RRSet per day (or equivalently,

0.0051 updates per RR per day). (§4.3)
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Client protocol. There are millions of DNS clients and resolvers already

deployed on the internet, using the existing lookup protocol. The

service must support these clients unmodified, or come with a plan

for how they will be upgraded. (§2.4)

Extensions. The service should allow extensions of the traditional role of

the DNS, for example load-balancing. (§2.8)

Authentication and integrity. There must be mechanisms for validating

the authenticity of records, and the integrity of communications.

(§2.7)

Robustness to failure and attack. The service must be able to respond

to at least 99% of queries on average. (§4.5)

4.7 The future

These requirements are only a description of the DNS today. As well as

meeting them, a replacement DNS must be able to scale with the task

in the future. Unfortunately, because we are not aware of any previous

specification in this detail, it is hard to describe the rates of change of

these requirements.

As a guide, we note that on average, since 2001, the number of hosts

seen by the ISC internet domain survey has been 1.3 times the previous

year’s number. The number of second-level domains under the gTLDs

has been on average 1.2 times the previous year’s number, over the same

period. This has fallen from the great expansion of the 1990s, when the

average multiple was 1.8. It is well known that the equivalent ratio for

the power of computers is between 1.4 and 1.5 [Tuo02].

4.8 Summary

In this chapter, we looked at various measurements of the current DNS

and extracted from them a set of requirements that describe the job done
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by the DNS. Next, we will address the design of a centralized nameser-

vice which can meet those requirements, while eliminating much of the

complexity of name lookups.



5 The design of a centralized

DNS

In the previous chapters, we described the DNS, both in terms of its design

and of the workload it currently supports. In particular, we observed that

although queries are more frequent and less tolerant of error than up-

dates, much of the complexity of the system is in the query protocol.

Here we present the design of a centralized nameservice, which uses

the same wire protocol as the current DNS, but which moves much of the

complexity from the lookup protocol to the update one.

5.1 Centralized architecture

Figure 5.1 shows the current DNS, and Figure 5.2 shows the architecture

of a centralized DNS. The authoritative servers of the current DNS are

replaced by a small network of central nodes, each of which contains a

copy of every RRSet and a nameserver which answers DNS queries for

them. A query can be sent to any server and will be replied to immediately

using that server’s local copy of the RRSets. The zone transfer system is

replaced by a network of links between the nodes, along which updates

are propagated to keep all the replicas synchronized. An update can be

submitted to any server, which will propagate it to the other servers. All of

the complexity of the distributed system is in the propagation of updates

between servers, leaving the lookup mechanism simpler.

49
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Clients

In the system described, client software does not change at all: although

the mechanics of a lookup are simplified, no alteration is needed to either

the wire protocol or the state-machine describing client behaviour. There

are hundreds of millions of hosts already on the internet, most of which

have stub resolvers in them; a system that did not work for those hosts

would be unacceptable.

Clients contact the centralized servers in the same way they did before:

using a configured list of known server addresses, which could be the

same as the current root server addresses. For a partial deployment, the

servers are advertised using NS records in the old DNS for the zones that

are served from the new one. The caching resolvers of the current DNS are

retained, not only because their function is still useful, but also because it

would involve a lot of effort to remove them.

Zone administrators

Each zone administrator has a cryptographic certificate entitling them to

make updates to records in their zone, and to issue further certificates for

delegated sub-zones. Instead of being required to run DNS servers for the

zone, they now publish records in the zone by sending a signed update to

a centralized server. This removes a considerable technical burden from

the administrator, since the software that submits updates can be much

simpler than an authoritative DNS server, and does not need to run all the

time.

Service nodes

Figure 5.3 shows the layout of a node in the service. It has three parts: a

nameserver that answers questions from the public, a database of all the

RRSets, and an update server. The update server accepts updates from the

public and participates in a distributed update propagation scheme with

the other nodes. We will describe them in more detail below.
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Figure 5.3: Node architecture

It is not necessary that this breakdown be reflected in the actual layout

of the site. The database can be held on a single server, and it might share

that server with the update mechanism. On the other hand the query load

might require a cluster of DNS responders, with more machines as warm

standbys for the ones in service.

Number of nodes

The service must be sufficiently distributed to ensure robustness, but no

more than that. A very large number of nodes would both cost money

and complicate the update mechanism, for little benefit. The more serv-

ers there are in the system, the greater the chance of one of them being

isolated or of updates being delayed. In addition it must be possible to in-

form all the clients of the presence of the servers. Even with anycast this

imposes an extra administrative overhead per node that we would like to

avoid.

The deployment and management of the nodes should be similar to

that of the current root servers:

• There should be about a hundred of them, to ensure reachability

from all parts of the internet.
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• They should be placed in well-connected places such as internet ex-

changes and Tier 1 ISPs, so that they can be reached quickly and

easily by clients.

• They should be geographically distributed.

• They should be run by a number of competent technical bodies, in-

dependent of the namespace administration.

• They should use different software and hardware implementations

of the service.

5.2 Nameservers

Each node of the service is a nameserver for the full DNS, so needs to

have machines capable of holding all the records and responding to its

share of the queries. A single server running the NSD nameserver can

answer 45,000 queries per second, if the database fits entirely in memory.

However, current nameservers are not designed to serve a database on

this scale; NSD can only serve about 20 million records in 4GB of RAM.

So we will have to load-balance queries across a cluster of servers.

Ideally, each server would be responsible for a particular subset of

the DNS, in order to minimize the working set of each server. Unfortu-

nately, the DNS does not lend itself particularly well to load-balancing in

this way, because it requires responders to supply additional information

along with the answer to a query, and that information may come from

other parts of the namespace.

The näıve approach of using a hash of the queried name to choose

which server to ask (similar to a distributed hash table on a local scale) is

particularly unsuitable. A responder needs knowledge of the namespace

surrounding the queried name as well as at that name: it must retrieve

the closest enclosing zone (to supply SOA and NS RRs) and for unsuccess-

ful queries it must search for an appropriate wildcard name, and for the

nearest existing name in a DNSSEC-secured zone. So simply hashing the
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query name would result in this context being repeated at every server

that answers queries from a zone, as well as a number of extra hash look-

ups for unsuccessful queries.

Splitting the namespace into subtrees and assigning a subtree to each

server solves this immediate problem. However, it requires adaptive re-

configuration at the load-balancer to make sure the load is spread evenly.

Also, queries in one part of the namespace can require additional lookups

in a quite different part. For example, an MX query will not only return

the mail servers for a domain, but also look up each of their IP addresses,

if they are available. Therefore, each server in a cluster must have the

entire database available (or a mechanism for referring sub-queries for

additional data to other servers). We choose to make the entire database

available at every node. Each server is responsible for serving records

from a subtree, and stores that subtree of the index in memory, so it can

quickly perform lookups over the names it receives queries on. It also

has the full contents of the DNS available on disk, with an LRU cache of

the parts that are in use: this will contain the subtree for which it is re-

sponsible, as well as those parts of the rest of the DNS that are needed for

additional-section processing. Responding to a query needs at most one

disk read for each name involved (for example, the original name and the

zone head). More popular records will not require a disk read at all, and

if enough RAM is provided to hold both the index and the server’s share

of the RRSets, disk reads can be made rare occurrences.

Another possible approach is to pre-compute the answers to all pos-

sible successful queries, store them on disk and index them with a hash

table. This would reduce the lookup time for successful queries signific-

antly but increase the amount of space required to store the database. Un-

successful queries would need to be handled in the same way as before, by

walking the tree looking for wildcards or DNSSEC records. This method

would introduce the risk of extremely expensive updates. For example,

changing the IP address of a nameserver that serves many large zones

would involve updating the stored response for every RRSet under all of

those zones. Instead, we suggest putting a cache at the load-balancer,
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which would give this sort of speedup for popular requests. Of course,

the responders should be provisioned under the assumption that queries

used in denial-of-service attacks will be arranged to be uncacheable.

Chapter 7 discusses the design of nameserver software capable of ful-

filling this role. It presents a datastructure for serving large DNS data-

bases, and evaluates it as well as some common alternatives.

5.3 Update service

The update service deals with requests from zone administrators to pub-

lish, update and delete their records. It verifies the signatures on the up-

dates, and that the administrator has the authority to make the changes,

using a tree of public-key cryptographic certificates. The tree of certific-

ates follows the tree of the namespace, and matches the delegation of

authority.

At each cut point, the parent zone’s administrator signs a certificate

containing the cut point, a validity period, and the child zone’s public key.

For compatibility with the old DNS, there must be appropriate NS records,

but they are no longer used to redirect queries to the child zone’s servers,

since the records of parent and child are served from the same place.

When a zone administrator submits an update request, the update ser-

vice can check that the administrator’s certificate covers the correct area

of the namespace, and follow the chain of certificates to verify its validity.

The root certificate must be configured at every node, and other certific-

ates can be propagated among the nodes, but the zone administrator can

be expected to supply the full chain if needed. A revocation list can be

published to the servers out of band.

The update service also communicates with other nodes, sending out

the updates it has received from administrators, and receiving updates

that were submitted elsewhere. The distributed update algorithm used

between nodes will be discussed in Chapter 6.

The update service stores details of all ongoing transactions in the

database, and makes the appropriate changes to the node’s master copy
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of the DNS when updates have been authorized.

5.4 Database

Each node needs a database, which will store its local copy of the DNS.

The database needs to store at least 1.8 billion records, and their asso-

ciated metadata (which will depend on the update algorithm); only the

update module will be writing records, so there are no write-write concur-

rency issues apart from any between concurrent updates. An off-the-shelf

database should be capable of filling this role.

The nameservers will need to receive updates to the records they serve

but do not need to read the metadata. The authorization keys and cer-

tificates, and the details of current and past updates, are only used by

the update module. The query load from the nameservers will only be

affected by the rate of updates and the overall size of the database.

To make it easier to bring new nameservers online, the database might

hold a copy of the DNS in a binary form that the nameservers can use

directly; this can be kept up to date by the nameservers themselves.

Another possibility would be to have nameservers serve records dir-

ectly from the database. However, this would require a much faster data-

base, and the performance of nameservers that use database backends is

poor (see Chapter 7).

5.5 Non-technical concerns

The political and bureaucratic mechanisms regarding administrative con-

trol of zones do not need to change at all in the new scheme. The same

bodies control top-level domains, and the registry-registrar system does

not need to change.

The only detail that changes is that, when a registrar assigns a zone

to an administrator, the registry doesn’t change the zone file. Instead, it

issues a certificate for the appropriate length of time. When a delega-
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tion expires, the registry deletes the child zone by submitting an update

request to a node of the centralized service.

The management of a public-key infrastructure on this scale is non-

trivial, but there is considerable operational experience from the opera-

tion of the X.509 certificate tree used for SSL, and best practice from that

field will apply to this one [CFS+03, CCITT05b].

Some zone administrators have policy reasons for wanting to keep

their zone contents secret, e.g., data-protection rules or security concerns.

The centralized DNS requires that zone files be distributed only among

the nodes; we do not propose that the nameservers support AXFR queries,

since there is no need for them. The node operators can be constrained

not to publish zone data by contractual agreements with the registries.

An important practical question is how the service would be rolled

out and paid for. One possible scenario is this: a group of TLD operat-

ors co-operate to build the service, and use it first to publish their own

zone files. A co-operative venture of this kind would be an opportunity

to reduce running costs, and also to offer a new service to zone owners

— migrating your zone to the same servers as its parent would give faster

resolution, and there is already a market for highly available and well-

placed nameservers [Ver05, Ult01]. Once the service is established, more

customers (leaf nodes and TLDs) could be solicited. The operating costs

would come from the yearly fees already paid for domain registration and

DNS hosting, and the control of the system would be in the hands of the

TLD operators (who are, we hope, trustworthy, since they are already in

a position to do great damage to their clients).

It is usually suggested that a new DNS architecture could be incre-

mentally deployed as a caching proxy in front of the old system’s author-

itative servers, with zone administrators gradually migrating to directly

publishing their records in the new system [KR00, CMM02, RS04]. We

reject this model on two grounds: firstly, it introduces yet more complex-

ity into the system, with no guarantee that this “temporary” two-system

arrangement will ever be removed. Secondly, it has no tie between the

service provided and the people who pay for it. The cost of the intermedi-
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ate caching layer scales with the number of clients, but the income scales

with the number of zone publishers.

5.6 Discussion

The main argument for a centralized DNS is architectural: moving the

complexity to where it can best be tolerated, and eliminating delay from

the least delay-tolerant part of the system. But some implementation dif-

ficulties of the DNS are also solved by this scheme.

• Because the delegation mechanism is not used, none of the various

ways in which it can go wrong are a problem: queries are not direc-

ted to servers that do not know the answers. Queries are answered

with eventual consistency by all servers, because the synchroniza-

tion between replicas is automatic. NS RRSets no longer have to be

duplicated at cut points.

• Because all zones are served from the central servers, most “dual-

purpose” (authority and resolver) DNS servers can be eliminated.

This removes a number of security threats, and also the possibility

of stale data being held on an ISP’s servers after a zone has been

re-delegated elsewhere.

• Having all of the DNS available at one place allows us to aban-

don the client-side aliases in use in the DNS (CNAME and DNAME)

in favour of server-side aliases, which could be implemented more

simply.

• In a central service, where all responses come from a small number

of trusted servers, the opportunities for cache poisoning are greatly

reduced. If there were no facility for zones to opt out of the service,

then cache poisoning would be eliminated entirely.

Having a centralized DNS opens up some new opportunities for further

enhancements.
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• DNS measurement is easier. Having access in a simple way to meas-

ure the load on the whole DNS will be helpful for the design of

future updates to the service. (Conversely, we need to ensure reas-

onable levels of privacy in a centralized nameservice.) Better DNS

measurement can also help with measuring other parts of the inter-

net, because DNS queries are usually caused by other higher-level

actions: it is already possible to track flash-crowds and botnets us-

ing DNS statistics.

• Once the requirement for hierarchical service is removed, the re-

quirement for a hierarchical namespace can follow. The only real

requirements are some way of assigning responsibility for parts of

the namespace, and a policy for access control. For example, the flat

namespace required by HIP [MNJH05] is hard to implement in the

current DNS but easy in a centralized system.

One drawback of the centralized approach is the reduction in flexibility:

• The domain administrator no longer chooses where the servers are.

In the current DNS, a service offered only in one country might have

all its nameservers in that country; in a centralized system there

would be no such choice. This puts a greater emphasis on the need

for caching resolvers to identify the closest server and send quer-

ies to it. This feature is not currently implemented in all resolv-

ers [WFBc04].

• The centralized service deals only with public DNS service. Many

organizations use the DNS protocols for their internal name service

as well, serving a different set of zones within their own networks

from the ones they serve publically. (We note that there is no partic-

ular requirement on them to use the DNS for this, and indeed it has

been common in the past to use a different protocol, e.g. NetBIOS,

for internal naming.) These organizations will have to keep their

name servers (but no longer make them publically accessible) and

will lose the benefit of the simple update protocol.
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• Domain administrators are restricted in the amount of active content

they can provide. Some domain administrators implement active

load-balancing at the DNS resolution stage, by having the response

depend on the IP address of the querier as well as the name and

type of the query. This sort of table lookup could be supported by

the centralized service. Some zones could be delegated in the old

way, either if their requirements were too complex to be provided

by the central servers, or as an intermediate step while new facilities

were rolled out.

We believe that the relative simplicity of the design is worth the sacrifice

of some flexibility. A more complicated design will be harder to imple-

ment correctly, less likely to have many different implementations, and

less likely to work. In this desire for practicality we are following the

authors of the original DNS [MD88].

5.7 Summary

We have presented the design of a centralized nameservice capable of

replacing the DNS without changing the deployed base of clients and re-

solvers, or the delegation of administrative control over the namespace.

By reducing the complexity of lookups it makes them faster and more

reliable.

The new system must be able to meet or exceed the existing levels

of service laid out in Chapter 4. In the next two chapters we will look

in more detail at two aspects of the system where this will be challen-

ging: the propagation of updates between nodes, and the construction of

nameservers capable of serving the entire DNS.



6 Inter-site update propagation

The architecture proposed in Chapter 5 calls for a distributed, replicated

database that allows updates and queries to be submitted at any node.

Queries are always answered from a local replica of the database, and up-

dates must be authorized locally and then propagated to the other nodes

in the system.

Before looking at any particular propagation mechanisms, we will

make our requirements more explicit:

• There are a modest number of nodes (about a hundred) in the dis-

tributed system.

• As far as possible, no node should be “more important” than any

other node.

• Temporary disappearances are to be expected: nodes sometimes fail,

and nodes sometimes cannot communicate with each other. On the

other hand, the set of all nodes will be relatively static: commission-

ing and decommissioning of nodes will happen over long timescales

(comparable to root servers). Since we also expect there to be rel-

atively few nodes, it is possible for each node to know about all the

others.

• Updates arrive into the system at an average rate of no more than a

few hundred per second. They can be submitted at any node.

• Updates should be propagated quickly; generally they should reach

all nodes in less than a minute. As we saw in Figure 3.1, most

61
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zones in the current DNS are configured to check the synchron-

ization between servers with a timer of more than five minutes.

RFC 1996 suggests that when changes are made at the master server,

it should notify its slaves; if it gets no immediate response it should

use a 60-second default timeout before resending DNS NOTIFY mes-

sages [Vix96] (although we note that BIND 9.3.2 uses a hard-coded

15-second timer). Replicas of every object are held at every node,

so updates must reach every node.

• There must be at least loose consistency between replicas. The cur-

rent DNS allows the publishing of out-of-date records for a length

of time defined by the expiry timer of the zone’s SOA record, in ad-

dition to the TTL-based caching of records at resolvers. Figure 6.1

shows the expiry timer values seen in the RIPE and Adam data sets

described in Chapter 4. About 98.5% of SOA records seen had expiry

timers set to more than a day.
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Figure 6.1: CDF of SOA expiry timers in Adam and RIPE datasets.
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Some zones have very short expiry timers: for example, almost 0.1%

of SOA records had the timer set to less than five minutes. This in-

cludes 4,350 records with the timer set to one second, and 1,891

with the timer set to zero. It seems likely that many of these re-

cords are configuration errors, but some zone administrators may

genuinely prefer no service to five-minute-old data.

• There are few conflicting writes. This comes from the administrat-

ive structure of the DNS: each domain name has only one entity

responsible for it. Shared responsibility is only possible within an

organization (in the current DNS, among those with write access to

the master zone file; in the new system, among different holders of

the zone’s signing key). Also, even within an organization, one en-

tity tends to be responsible for each attribute of each name. There-

fore we can assume that conflicts only occur in exceptional cases,

and handle conflicting writes more slowly than non-conflicting ones.

(There may of course be deliberately conflicting writes; the system

must ensure that they do not unduly hold up other users’ write re-

quests. In general, since it would not be difficult to create a very

high rate of updates, the system must make sure that one user’s up-

dates do not affect the service provided to other users.)

• Although writes are accepted at any node, they might not be bal-

anced equally over all nodes. Some sort of load balancing or re-

source location service could be deployed to help clients find a local

and unloaded node, but such systems are not always successful bey-

ond avoiding pathological cases [JCDK01].

6.1 Using weak consistency

Because we expect few conflicting writes, and have such loose require-

ments on consistency, it seems appropriate to use an optimistic replication

system. Saito and Shapiro [SS05] have categorized optimistic replication
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schemes according to six design choices, and we will use their taxonomy

here to describe a suitable mechanism.

First we define an object (the unit of data handled by the update sys-

tem) to be an RRSet, as it is the minimum unit of data that can be de-

scribed by a query or an update in the current system. Most of the opera-

tions in the DNS work at this level. Working at a finer granularity would

only introduce complexity as various constraints are met — in particular

all RRs in an RRSet must have the same TTL, and are covered by the same

DNSSEC signature. Next we look at the six design choices.

Operations. We use state transfer: the only operation is the definition of

a new version of the RRSet. If no previous version exists, this creates

the RRSet; we use tombstones to indicate deletion of RRSets. The

new version is stamped with the time of submission and the ID of

the server to which it was submitted. This gives us a total order on

timestamps (sorting first by submission time and then by node ID).

Number of writers. An update can be submitted at any node.

Scheduling. Operations are scheduled using a simple syntactic rule: op-

erations with higher timestamps are defined to have taken place

after those with lower timestamps. Because we expect few write

conflicts, a complex resolution scheme for merging updates would

have little benefit. Also, a “merge” operation on RRSets might cre-

ate non-intuitive results, and it is not clear what action to take for

unresolvable conflicts, since the original submitters of the updates

would not be available to intervene manually.

Conflict resolution. Conflicts are resolved (or rather, they are ignored)

using Thomas’s write rule [JT75]: when an operation arrives at a

node, its timestamp is compared with that of the last operation ap-

plied to the same RRSet. If the new operation’s timestamp is more

recent, it is applied. If not, it has arrived too late and is discarded.

This simple scheme removes the need for a separate “commit” op-

eration. When an RRSet is deleted, a tombstone must be kept at
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each site until the delete operation has propagated to all sites. This

can be done by expiring them after some suitably long interval (for

example, Grapevine deleted tombstones after 14 days [BLNS82]). A

node that is isolated for longer than that recovers its state by copying

another node, rather than using the normal transfer of operations.

Propagation. Broadcasting all operations to all nodes of a hundred-node

network would be wasteful, but we still want operations to propag-

ate quickly though the network. Also, since not all nodes will be able

to see each other at all times, operations need to be routed around

failures.

A number of application-level reliable multicast schemes have come

out of research into self-organising peer-to-peer systems [CJK+03].

As an example, we take SplitStream [CDK+03], a streaming multic-

ast protocol that uses multiple, efficient trees to spread the load of

multicast content distribution in a peer-to-peer network. By splitting

each stream into “slices” and multicasting each slice over a different

tree, and by ensuring that the set of forwarding nodes in each tree

is disjoint from the others, SplitStream limits the loss incurred when

a node fails. By using erasure coding at the source, it can allow sev-

eral nodes to fail or disappear without losing data at the receivers.

A node failure causes partial loss of a single slice (until the trees

are reconfigured to cope), so if each receiver does not need all the

slices, the failure is compensated for.

Consistency guarantees. The DNS does not provide read/write order-

ing between servers: a client that communicates with multiple serv-

ers can see updates “disappear” if the servers are not currently syn-

chronized.

The DNS does provide bounded divergence, by having an expiry timer

associated with each zone: if a slave server has not contacted the

master after that time, it stops serving its copy of the zone. As

we saw earlier, most zones have this timer set to more than a day.
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The same level of bounded divergence can be provided by detecting

when the update propagation is failing, and refusing to serve zones

whose expiry timer is shorter than the oldest possible update that

might be undetected.

If nodes that have no updates issue occasional “heartbeat” updates,

it is simple to detect when a node has been disconnected from the

network. If a single node is disconnected for a long time the other

nodes can agree (by a pessimistic vote) that it is no longer part of

the scheme and ignore it for the purposes of expiring records. This

is safe so long as each node waits until it has told at least one other

node about an update before acknowledging it to the client. More

complex partitions of the nodes may require manual intervention.

Since there is a trade-off between how low this timer is set and how

available a record will be in the centralized system, administrators

who currently use a very low value of the expiry timer may need

to opt out and provide their own service. We consider these special

cases to be similar to other highly specialized zones, such as those

performing arbitrary computation in response to queries.

Table 6.1 compares the current update propagation system (zone trans-

fers) with what we propose for the centralized DNS.

The decision to use Thomas’s write rule and state-transfer operations

means that the service cannot directly implement the semantics of DNS

UPDATE [VTRB97]. DNS UPDATE allows the updater to specify precon-

ditions that must hold if the operation is to succeed, for example “The

RRSet I am trying to register does not already exist.” With the proposed

system, two clients could make updates to the same RRSet at different

servers, and both be assured that the RRSet does not (locally) exist. The

conflict would not be noticed until some node receives both updates, at

which time it will discard the earlier one, although the semantics of DNS

UPDATE require the earlier one to succeed and the later one to fail.

Figure 6.2 shows an example of this: clients x and y are trying to use

preconditions to synchronize their operations and ensure that only one of
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Old New

Object Zone RRSet

No. of writers Single-master Multi-master

Operation Operation-transfer State-transfer

(AXFR/IXFR)

Scheduling n/a Syntactic

Conflict n/a Thomas’s write rule

resolution

Propagation Star topology, Semi-structured,

hybrid push/pull push (epidemic)

Consistency Bounded divergence Bounded divergence

guarantees (by SOA timers) (by detecting partition)

Table 6.1: Properties of the old and new update propagation mechanisms

them writes to record N. Both x and y are told that their preconditions

are true. When the conflict is later resolved, x’s operation (which should

have succeeded) is discarded, and y’s (which should have failed) is kept:

retrospectively, both x and y have been lied to.

x y

A B C

1: Set N=x iff !∃N 3: Set N=y iff !∃N2: OK 4: OK

5: N=x, T=(1,A)

6: N=y, T=(3,C)

7: N=y, T=(3,C)

Figure 6.2: DNS UPDATE semantics are broken by state-transfer propaga-

tion.

By changing to an operation-transfer semantics, and propagating the

precondition along with the update, the correct resolution could be en-

forced, but the conflict would still be detected too late — after y has
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(apparently successfully) submitted his request and moved on to other

things.

One way of resolving this problem is to require clients to synchronize

their DNS UPDATE requests before they are submitted. This may be a reas-

onable requirement for zones where updates are already co-ordinated, for

example when updates are sent from DHCP servers. Another way is to del-

egate administrative control of individual names to the entities that will

use them, for example in a dynamic-DNS zone where each client has the

right to update only its own record.

These two options are policy decisions, and have no effect on the

implementation of the service: the first expresses policy as a voluntary

code of behaviour among holders of the same capability, the other as a

guideline for the entity handing out the capabilities. Since DNS UPDATE

already relies on clients’ good behaviour — there is nothing to stop a cli-

ent simply omitting the preconditions in an update — this does not seem

unreasonable.

The third option is to use pessimistic concurrency control, and not

respond to a DNS UPDATE request until the operation is successfully com-

mitted and cannot be pre-empted by another update. In the next section

we describe such a system.

6.2 Using strong consistency

In order to be able to tell a client with certainty that an update has suc-

ceeded, we need to provide a stronger consistency guarantee. We must

know that an operation has been agreed on by the majority of nodes be-

fore it is reported as a success to the client who requested it. Operations

are applied to entire zones: because the DNS UPDATE preconditions we

are trying to enforce apply to zones, we cannot treat RRSets as the unit of

propagation. Updates to different zones are orthogonal and may happen

in parallel.

As an example of a pessimistic update propagation system we consider

UFP [Ma92], an adaptation of the multi-decree Paxos protocol [Lam89]
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designed specifically for use in a name service. Like Paxos, UFP uses a

three-phase protocol to gather a quorum, or simple majority of nodes com-

mitted to an operation, before declaring it a success. Unlike Paxos, it does

not require all operations to be mediated by an elected leader. Instead,

under the explicit assumption that write collisions are rare, it allows any

node to initiate a vote on an update operation.

In UFP, every node has a co-ordinator, which tries to get nodes to agree

on updates, and a participant, which controls the local replica of the data-

base.

The protocol executes in rounds of three phases. In the first phase,

a co-ordinator gathers a quorum. The quorum members agree on the

current state of the object to be changed (in our case, the serial number

of the zone), and the sequence number of the current vote. In the second

phase, the co-ordinator proposes a vote to the quorum. If that vote is

passed by a majority of participants, the co-ordinator instructs the quorum

to commit the operation to permanent storage in the third stage. The

election rules for each stage are given in Appendix B; for full details and

analysis see Chapter 5 of [Ma92].

In either of the first two phases, two co-ordinators may collide and one

of them will fail to get a quorum; he may then time out his operation and

try again from the beginning. As in Paxos, the operation being voted on

in phase two may not be the one the co-ordinator wanted to vote on: if

he has effectively stolen another co-ordinator’s quorum in the middle of

the voting process, he is required to propose the same operation as was

under consideration. He may then start again with his own operation.

UFP only commits the operation at the nodes that voted for it; a sec-

ondary protocol is needed to propagate the committed operation to the

other nodes in the system. This can be the same propagation method as

used in the optimistic case, since operations being propagated have been

approved by a majority of the nodes and are therefore known to be safe

to apply.

Because updates are only ever applied by a quorum of nodes that are

all working with the same version of the object, the DNS UPDATE rules
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can be safely applied by the node proposing the update, and need not be

checked explicitly by every node during the voting.

6.3 Discussion

The cost of weak consistency

Simply broadcasting the updates all-to-all costs N−1 messages per up-

date, plus a further N−1 acknowledgments for reliability. Lost messages

cause retransmissions on top of this.

The cost of forwarding messages over SplitStream is proportional to

the number of neighbours each node has. For example, if every node is

prepared to forward messages to sixteen others, and the messages are

split into sixteen stripes, there will be 16N messages required to send

a message, but each will contain 1/16 of the original message. Using a

coding rate of R (i.e. 1 byte takes R bytes to send encoded), that means a

total of RN copies will be sent in 16N messages.

Although the number of bytes sent is the same, the number of links

maintained in SplitStream is much smaller, and simulations in [CDK+03]

show that the overall load on the network links between the nodes is very

much lower. In addition, it deals better with unbalanced load: even if

every update arrives at the same node, SplitStream arranges that each

node sends only the sixteen messages per update it has been allocated,

rather than one node sending all N−1 copies.

There is some extra cost for maintaining the SplitStream topology, but

as we expect the nodes to be stable, this will be low compared to the data

transmission costs.

The latency of propagation is proportional to the depth of the trees,

which should not be more than two or three hops for the size of network

we are describing. The hops themselves are kept short by the underlying

Pastry [RD01] routing tables, which choose shorter paths where possible.
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The cost of strong consistency

UFP operations on different objects can happen in parallel and, if a series

of updates is being sent, the operations can be pipelined, requiring only

two rounds of messages per update. The smallest number of messages

that can be involved is ⌈N/2⌉ containing the update and 3⌈N/2⌉ smaller

messages (votes etc.). This increases to N−1 copies and 3(N−1) small

messages if all nodes are involved in the quorum. The small messages can

in some cases be piggybacked on larger messages going the other way.

These messages are all either sent or received by the co-ordinating

node, so the nodes do not get the load-balancing effect seen in Split-

Stream. There is a further cost of propagating the agreed update to the

nodes that were not in the quorum. This will involve roughly one extra

copy of the message per node that was not in the quorum, but can be

arranged in a more balanced way. So the overall additional cost of the

voting system is in three parts: the 3⌈N/2⌉ extra protocol messages, the

extra latency of requiring a quorum to vote on an update before it can be

distributed to all nodes, and the lack of load balancing.

If two updates collide, the cost of the second one is about tripled in the

worst case, as the proposer is forwarded ⌈N/2⌉ copies of the first update

and then proposes it again himself. There is some extra bandwidth cost

to the non-colliding updates; this is not a problem in the optimistic case

because we take no special action for colliding updates.

The latency of propagation is five hops, where each of the first four

is the longest of all inter-node distances between the coordinator and the

members of the quorum, followed by another delay of up to three hops

while the updates are propagated to nodes not in the quorum.

In either case, there will be some additional cost in bandwidth for

background checks: the servers must periodically sweep the entire data-

base to double-check that their copies are in fact consistent.
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6.4 Summary

We have discussed two distributed update schemes which would be suit-

able for propagating updates between nodes of the centralized nameser-

vice. One is to optimistically multicast changes, which is cheaper; the

other is to vote on them, which preserves the exact semantics of DNS

UPDATE.

In the next chapter we will discuss the other challenge of such a large

system: how to build a DNS server large enough and fast enough to sup-

port the load of the DNS.



7 Implementation of a

high-volume DNS responder

The centralized design for a nameservice proposed in Chapter 5 calls for

each node serving the DNS to have a responder large enough to handle the

entire contents of the DNS and fast enough to respond to a high volume

of queries. In this chapter we discuss the design of such a responder and

evaluate our prototype implementation.

7.1 Index of domain names

There are three common lookup methods used in open-source DNS serv-

ers. (We do not address the datastructures used in commercial servers as

the source code is not available to us.) The first, and most common, is

a balanced binary search tree [MS05b] using a comparison function that

implements the DNS’s ordering on names. This is used in BIND, NSD and

many less-popular servers. It allows support for DNSSEC’s authenticated

denial by allowing a failed lookup to return the closest preceding name

that does exist.

The second is to store all RRSets in a hash table [MS05b], indexed by

the query name and type. This allows for very fast lookups but requires

some special handling for failed lookups, such as explicitly searching for

the enclosing zone or wildcard. It does not support the “closest preceding

name” query type needed by DNSSEC at all. This is used in many caching

resolvers (which do not need to do these tree-walking lookups) and also
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    ns
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Figure 7.1: A fictional part of the DNS namespace

in the tinydns authoritative server, which does not support DNSSEC.

The third is to offload the data lookup to a general-purpose database,

using a standard interface such as SQL or Berkeley DB. Using a database

back-end allows administrators to integrate their other network manage-

ment tools with their DNS zones without needing to export zone files. This

is available in PowerDNS and BIND, although in both cases the server’s

built-in red-black tree gives better performance (see below).

For a DNS responder that has to handle extremely large numbers of

domains, we have chosen a different data structure: a radix trie [MS05b];

specifically, a 256-way radix trie with edge information stored at each

node.

Figures 7.1 and 7.2 show an example of part of the DNS namespace,

and a trie holding the same names. In order to preserve the same or-

dering on DNS names as required for DNSSEC, we must first reorder the

labels, so www.example.com is entered in the trie as com|example|www|,

where | separates labels and is ordered before all other characters. Also,

any upper-case ASCII characters are converted to lower case. With these
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Figure 7.2: The same names arranged in a radix trie

changes, the DNSSEC ordering is the same as simple lexicographical or-

dering on converted names†.

Each node of the trie is marked with the index into the key of the

character that a lookup should branch on when it reaches that node.

Also, each edge is marked with all the characters where there are no

branches; in this way lookups can check all the characters of the key,

not just the ones where there are branches in the trie. (A lookup for

com|different|mail| would follow the edge marked com|ex and, by

comparing the edge string to the relevant part of the key, know that there

are no keys in the trie that start with com|di, and give up the search.)

We note that there can be nodes in the trie that have no correspond-

ing node in the namespace (e.g., the node representing com|ext in Fig-

ure 7.2), and nodes in the namespace without corresponding nodes in the

†Bit-string labels [Cra99a] could be supported by writing them out one bit at a time,
using representations for one and zero that are ordered before all characters except the
separator. However, since bit-string labels are being withdrawn from the standards due
to interoperability difficulties and lack of demand [BDF+02], we have not included them
in the prototype.
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trie (e.g., the node representing com in Figure 7.1).

The radix trie has the following advantages over a binary search tree.

• Like the binary tree, a failed lookup can easily return the closest pre-

ceding name. However, with a few small modifications, lookups can

also return the enclosing zone or delegation point and a wildcard-

location hint in a single pass through the trie. Details of this are

given below.

• A balanced red-black tree with N entries needs up to 2⌈log2(N)⌉

comparisons to complete a lookup. (For successful lookups this

number will be lower if the key happens to be stored higher up

in the tree; for unsuccessful lookups it must be at least ⌈log2(N)⌉).

The radix trie has a higher branching factor and so will have shorter

lookup paths. This is offset by the fact that the trie cannot be re-

shuffled for better balance; it is only as balanced as the data being

stored. This can be seen as an advantage for a large public ser-

vice: imbalances in one zone’s data do not affect the trie depth for

other zones. Figure 7.3 shows the maximum and average depths of

lookup paths through tries indexing up to 20 million lines of zone-

files (taken from the RIPE data). For scale, ⌈log2(N)⌉ and 2⌈log2(N)⌉

are shown.

• A binary tree requires a full comparison between the search key and

the key at each node as it proceeds down the tree. A radix trie

requires only a comparison of the edge data for each edge followed:

each byte of the key is looked at only once. As the tree becomes

larger, and therefore deeper, this makes more of a difference.

The shape of the trie follows the shape of the DNS’s namespace tree. A

delegation point in the DNS is represented as a sub-trie of the trie, and a

DNS zone is a contiguous area of the trie. This means that we can reuse

the trie structure to follow the DNS structure instead of having to store

that structure separately. More interestingly, in the process of looking up a

name, we pass the top of its enclosing zone. This means that by marking
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Figure 7.3: Depth of radix trie vs number of entries

nodes where SOA or NS RRSets are present, and remembering the last

marked nodes we saw during a lookup, we can recover the zone head

information at the same time as doing the lookup. The lookup algorithm

is still very straightforward. Algorithm 1 gives a pseudo-code version of

it, and a full implementation is given in Appendix A.

This algorithm returns the RRSets for the query name (if any exist)

and also those for the closest enclosing zone and cut point. If the lookup

fails, we can look for a suitable wildcard as well. The wildcard rules for

the DNS make this more subtle than looking for zones. The server must

back up along the key to the “closest encounter” (the last node that it

passed in the namespace tree), and overwrite the rest of the key with *.

This gives a key for the “source of synthesis”: any RRSets found under the

modified key can be used to synthesise answers to the original query†.

†The source of synthesis is a domain name of the form *.a.b.c, and is a wildcard
that matches any name of the form x.y.z.a.b.c, so long as none of x.y.z.a.b.c,
y.z.a.b.c or z.a.b.c exists in the namespace. The advantage of this scheme is that it
means there is only one possible wildcard that could match any given query [Lew06].
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Algorithm 1: Basic lookup algorithm.

node := root
repeat

last branch := node
if node is flagged “SOA” then last soa := node
if node is flagged “NS” then last ns := node
if node is flagged “DNAME” then

return the DNAME RR and rewrite the query.

node := node→ child [key [node→ byte ]]

if node is null then fail

if node→ edge does not match the key then fail
until we have used all the key

The zone head is stored at last soa, and the cut point for a

delegated zone is at last ns. If the lookup succeeded, the RRSets for

the queried name are at node. If the lookup failed before the key

was used, we report a name error (NXDomain); if it failed and all

the key was used, we report a “no data” error (NoError).

Note that the closest encounter is a node in the namespace tree, which

means it is at a break between labels. It does not necessarily coincide

with a node in the lookup trie. The server might back up past several trie

nodes, since there can be a node at each character of the key. Also, there

is not guaranteed to be a trie node at the closest encounter.

For example, in the first zone fragment in Figure 7.4 a lookup of

the name trial.example.com should be answered from the RRSets of

*.example.com. In the second, although the tries have the same shape,

a lookup for trial.x.example.com should fail. Algorithm 2 shows how

this can be implemented in the radix trie.

In looking up trial.example.com in trie A of Figure 7.4, the server

follows com|example|tr, finds that it cannot complete the lookup, and

then backs up to the previous ‘|’ at com|example|. It adds *| to the key at

that point, and proceeds to find the wildcard. In trie B, the failing lookup

of trial.x.example.com has passed one more ‘|’ so does not back up as

far. It looks for a wildcard with the key com|example|x|* and does not

find one.
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Figure 7.4: Examples of the DNS wildcard algorithm

If the zone is secured with DNSSEC, a failed lookup needs to find the

previous entry in lexicographical order, where the relevant NSEC RR will

be. Intuitively, we need to head up the tree until the first chance to go one

branch to the left (or the top of the zone) and then go down and to the

right until we meet a record: see Algorithm 3. We can precompute some

of this on the first pass by remembering the last node where the branch

we took was not the leftmost one. This removes the need for upward

pointers in the trie.

Support for NSEC3 [LSA05] will require additional data structures as

the hashed queries used for denials deliberately do not follow the tree

layout of the namespace. If a query fails, the server must hash the query

name and find the name with the closest preceding hashed value, which

will have an NSEC3 RR covering the extent of the hashed namespace that
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Algorithm 2: Wildcard lookup algorithm.

byte := (last branch→ byte) – length(last branch→ edge)

while key [byte] matches last branch→ edge do
byte += 1

while key [byte] is not ‘|’ do
byte –= 1

length(key) := byte + 3

key [byte + 1] := ‘*’

key [byte + 2] := ‘—’

The key is now the key for a lookup of the source of synthesis.

Re-start the search; we can start at the zone head because it must

be above (or at) the closest encounter:

node := last soa
repeat

node := node→ child [key [node→ byte ]]

if node is null then fail

if node→ edge does not match the key then fail
until we have used all the key

Algorithm 3: DNSSEC lookup algorithm.

node := last branch
repeat

char := key [node→ byte ]

if node has any children with index less than char then
set node to the one with the largest index

break

if node has any records stored at it then
return node

if node == last soa then
break

node := node→ parent
while node has any children do

Set node to whichever of its children has the largest index.

return node
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includes the hashed query. A binary tree stored at the zone head, and

mapping back from hashed names to their original owners, would suffice.

Updates

Because of the size of the database, it would be unacceptable to have

to recompile the datastructure every time a change is made. The trie

described above has been designed with the intention of allowing it to

be updated with little effort. Zones can be split and delegated simply by

adding the relevant records and flags to the trie. Adding wildcard records

does not require any extra housekeeping in the trie. Because we use a

trie instead of a balanced tree, there is never any need to re-balance the

structure.

Names can be deleted entirely from the trie by removing at most two

nodes (see Algorithm 4).

Algorithm 4: Name deletion algorithm

Find the node corresponding to the name, using Algorithm 1.

if node has more than one child then
return

if node has one child then
Prepend node→ edge to child→ edge
Update parent→ child [] to point to child instead of node.

return

else
Delete node from parent→ child []

if parent now has only one child, and no data of its own then
Recursively delete parent. (This is guaranteed not to recurse

again, since parent has one child.)

7.2 Implementation

The data structures and algorithms above were implemented twice: once

in C and once in Objective Caml (OCaml).
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The first version is an optimized, memory-efficient C implementation.

It consists of just the data structure and algorithm; for the evaluation

below, the rest of the DNS server (network service, packet marshalling,

additional-records rules, zonefile parsing, etc.) was taken from NSD 2.3.1.

The OCaml version is intended as a reference implementation, giving

the details that are skipped over in the pseudocode above, and is much

more readable than the C one. It is the core of our implementation of

a full authoritative DNS server, including a zonefile parser and the lo-

gic for assembling full responses from queries, written entirely in OCaml.

Code for marshalling and unmarshalling DNS packets was provided by

Anil Madhavapeddy, as part of his work on high-performance type-safe

internet applications [MS05a]. The entire OCaml server will be released

as open-source code in the near future. The OCaml implementation of the

radix trie is included as Appendix A.

Since we plan to keep the entire index trie in memory, we need to

have an efficient way of storing the nodes. Figure 7.5 is a histogram of

the fanout of nodes in a trie populated with about 14 million domain

names taken from the RIPE probe data. Most of the nodes have relatively

low fanout; less than 1% of nodes have more than eleven children. The

highest fanout seen in this trie is 52. In the C implementation, we embed

the edge strings and child tables directly in the nodes. Nodes with fewer

then eight children have a simple array of edges; larger ones have a two-

level lookup table. Because all of the data for a node is held in one place,

we can use small offsets within the nodes rather than pointers, and the

nodes have good locality of reference.

In the OCaml implementation, child tables are represented as arrays

of pointers which are automatically grown to fit the number of children.

OCaml does not allow the programmer the same control over data layout;

indeed the garbage collector is allowed to move objects around at run-

time, and makes heavy use of pointers.

In order to reduce the memory footprint at run-time, the OCaml im-

plementation uses hash consing [Fil00] to merge identical strings and

string lists. There is only one copy of any character string in the database
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Figure 7.5: Histogram of node fanout in a populated radix trie

at a time: this means that for example, the string “com” is not repeated

for every domain name in the database. This scheme actually requires

more memory at zone loading time, because it uses a hash table to ensure

uniqueness, but the hash table can be paged out once loading is finished,

since it is only needed when updates are being made.

7.3 Evaluation

Figures 7.6 and 7.7 show the performance of the trie-based server against

version 2.3.1 of NSD and version 9.2.3 of BIND for different query sets. In

both figures the server was loaded with RRs taken from the RIPE dataset

of uk, and run on a dual-processor 2.4GHz AMD Opteron with 4GB of

RAM, running Fedora Core 3 with a Linux 2.6.9 kernel. The servers were

constrained to use only one processor, while the queryperf program ran

in parallel on the other CPU to test how quickly the server could answer

queries. Queryperf ships with the BIND nameserver and is designed to
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Figure 7.6: Performance vs database size: 2.5 million successful queries
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Figure 7.7: Performance vs database size: queries from UCL trace
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measure nameserver performance by sending queries as quickly as they

are answered. In all cases, the server was warmed up with a pass through

the query set, and then queryperf was run for five tests of five minutes.

The error bars are at 95% confidence intervals around the mean. Results

from testing over a LAN were almost identical to those given here.

In Figure 7.6 the queries used were 2.5 million unique RRSets from

the same data that was being loaded onto the server — that is, for every

point above 2 on the horizontal axis, all queries were for data that was

present at the server. The trie server is about 8% faster overall for these

queries. NSD spends 22% of its time doing red-black tree lookups (55%

in the kernel, 23% on everything else), so the speedup of the trie itself

over the red-black tree is significant.

Figure 7.7 shows the performance for the set of all unique queries in

the UCL trace file described in Chapter 4. In this case there were only

525,324 queries, and 76% of them were not present in the database.

The trie server is slower than NSD for these queries, because of the

way it handles negative searches. It is using the algorithms described

above, while NSD uses some optimizations based on the assumption that

it will serve static data. Since the namespace tree will not change, various

hints about where wildcard and DNSSEC records will be found can be

precomputed at zone loading time and stored in the database. The radix

trie, on the other hand, has the ability to change parts of the namespace

without recomputing the entire index.

In both of these graphs, we show the performance of the OCaml server

as well. Unsurprisingly, it is nowhere near as fast as the optimized C

of NSD. Also, because OCaml makes heavy use of (aligned) pointers, its

memory footprint on the 64-bit test machine is very large; loading data-

sets larger than 4 million records was not practical on a 4GB machine with

8GB of swap.

We have also included BIND 9 for comparison, as BIND is the most

popular nameserving software in use†. BIND is very much slower than

†According to various online surveys, e.g.: http://mydns.bboy.net/survey/ or
http://dns.measurement-factory.com/surveys/200504-full-version-table.html
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NSD, and at about 14 million records the data set becomes too large for

it to handle. BIND is faster than the OCaml server, although for smaller

datasets it is slightly slower.

We also measured BIND 9 using a PostgreSQL 8.1.3 database backend.

The database was loaded with 2 million records, but BIND could not serve

all of them because it uses a connection to the database per zone and

quickly runs out of available connections. Therefore we used queries

for only the 27,481 records that BIND would serve. Over five runs of

five minutes, the server answered an average of 23 queries per second

(±0.55).

Since the BIND plugin is clearly not intended for reliable production

use (indeed some effort is required even to compile it) we also evaluated a

dedicated SQL frontend server, MyDNS, which claims to be “very fast and

memory-efficient”. MyDNS gets most of its speed by caching both SQL

queries and entire DNS responses. With caching disabled its performance

is even worse than BIND’s SQL frontend, taking almost a tenth of a second

per query. With caching enabled, it answered 15,665 queries per second

from a warm cache (±505), which is worse than BIND’s red-black tree.

Figure 7.8 shows the performance of the servers when loaded with 60

million records from the RIPE survey, and queried about different subsets

of those records. The queries are contiguous subsets of the loaded data,

shuffled randomly and then sent as queries to the server. Once again,

the error bars are at 95% confidence after five runs. Both the original

and modified versions of NSD can serve up to 20 million records on this

machine before the working set becomes larger than memory and the

server starts to thrash. The trie version is faster, as expected, and the

benefit increases from about 9% to about 16% as the load increases. BIND

was not included in this test as 60 million records is far more than it can

handle on our test server.
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7.4 Discussion

In Chapters 4 and 5 we laid down some requirements for our nameservers.

Let us revisit them now.

Database size 1.8 billion resource records would take up about 360GB

of storage. If we want to be able to answer queries from RAM, this

means we need to load-balance, for example across six machines

with 64GB of RAM each

Query rate The peak query rate of 2.7 million queries per second is spread

across all the nodes of the service, though not necessarily evenly. If

each server can handle 50,000 queries per second, then the six serv-

ers per node we already suggested can handle 300,000 queries per

second. Then the peak load can be handled with only nine nodes in

service.
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Cost Although such a cluster would be expensive to build and to run,

the requirement is only that it be no more expensive than the cur-

rent system, which contains more than 1.4 million servers. Even if

many of those servers are shared with other tasks that is still a con-

siderable investment. The difficulty is one of economics, namely of

collecting the money in one place.

Over the last three chapters, we have described how a centralized

nameservice could be built to replace the DNS. In the next chapter, we

will discuss related work in the area, before summing up in Chapter 9.



8 Related work

There have been a number of projects suggesting changes to the DNS

architecture, as well as the ongoing work of developing new features for

the existing DNS and of measuring its behaviour. We summarize some of

that work here.

8.1 DNS standards development

The IETF working groups on DNS Extensions (dnsext) and DNS Opera-

tions (dnsop) continue to develop and standardize new features for the

DNS, and to issue best-practice documents on operational matters.

DNSSEC [AAL+05a, AAL+05c, AAL+05b] is the proposed authentica-

tion mechanism for RRSets. It is a public-key infrastructure where each

zone has an associated signing key that is trusted to sign RRSets in that

zone. That key is signed by another key-signing key for the zone, which in

turn is signed by the parent zone’s key. A resolver wishing to authenticate

RRSets it receives can follow the chain of signatures until it reaches a key

it knows and trusts.

In theory, this trust anchor will eventually be a widely published key-

signing key for the root zone but, for now, other methods are needed to

distribute trusted keys to resolvers. One such mechanism is DLV [AW06,

Vix05], which allows the distribution of DNSSEC keys from a point other

than the root of the DNS, allowing early rollout without having to solve

the thorny problems of root key maintenance until there is more oper-

ational experience of DNSSEC. Operational procedures for key mainten-

89
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ance and rollover in signed DNS zones are being developed in the IETF

and other fora, such as the RIPE DNS working group.

It is likely that yet another version of DNSSEC will be needed before

wide adoption: the current mechanism of signing the “gaps” between

RRSets (to allow authenticated denials without online signing) allows re-

solvers to enumerate all RRSets in a zone, and this is unacceptable to

many zone administrators. NSEC3 is a new mechanism being developed

to avoid this problem by hashing all the valid query names first and sign-

ing the gaps in the hashed zone [LSA05].

The other direction in DNS standards development is defining new

record types for new applications of the DNS. This is often tied to the

development of new protocols that require some nameservice element

(e.g., IPv6), but also includes extensions to how naming data are used in

existing protocols. For example, there are currently various schemes that

attempt to reduce unwanted email by blacklisting misbehaving servers or

whitelisting “good” servers†, or by using DNS records to indicate which

servers are allowed to emit emails from particular domains [MS05c] (this

is roughly analogous to MX records, which indicate the servers that may

receive mail for each domain).

Most of this work is orthogonal to the sort of architectural changes

proposed in Chapter 5. A new record type with special handling rules

would require some changes to a DNS responder, but would not affect the

mechanisms for submission and distribution of records within the central-

ized DNS. Any DNSSEC scheme that allows off-line zone signing will be

compatible with a centralized scheme.

8.2 DNS surveys and measurement

Traffic analysis

Quite a lot is known about the traffic at the root servers; in particular

it is well known that a lot of it is unnecessary. Danzig et al. [DOK92]

†An index of many of these DNS-based lists is at http://rbls.org/ .



8.2. DNS SURVEYS AND MEASUREMENT 91

argued in 1992 that the proportion of packets on backbone links that

were DNS lookups was higher than it ought to be, even ignoring the ef-

fects of caching. They analysed traces taken at a.isi.edu and showed

that 95% of the traffic at that root server could have been avoided by

better-written software and smarter retry rules. More recently, Wessels

and Fomenkov [WF03] have analysed traces taken at the F-root servers

and shown many of the configuration errors in clients and resolvers that

cause unnecessary traffic at the root servers. Most of the errors uncovered

in those papers are in resolvers, although some are in hosts that should

not be sending traffic to the root servers at all.

Wessels et al. [WFBc04] analysed DNS traffic in several academic net-

works and in laboratory experiments to describe the behaviour of different

implementations of DNS caching resolvers, and the effect that the imple-

mentation decisions have on traffic to root and TLD servers.

Zone contents

The RIPE NCC have performed a monthly host-count of the RIPE-area

ccTLDs since October 1990 [RIPE]. Their collector machines recursively

zone-transfer all zones under the relevant TLDs, and the collected zones

are analysed to provide statistics about DNS usage. Despite having a long-

standing project and actively requesting zone transfer access from ISPs,

they typically collect transfers of only half of the zones they see, because

server administrators commonly deny zone transfers as a security meas-

ure.

ISC have host count data going back to 1981 [ISC]. In 1987 they star-

ted performing recursive zone transfers starting at the TLDs. In 1998,

because server admins were refusing zone transfers, they switched to

walking the in-addr.arpa zone of mappings from IP addresses to names.

Their current probe walks any allocated netblocks for which it cannot get

zone transfers. They produce a listing of PTR records in in-addr.arpa

every quarter.

Our Adam survey described in Chapter 4 used the same method as the
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RIPE count probe, and as the old ISC probes, to gather 23.4% of the zones

under the most popular gTLDs.

Edge measurement

Liston et al. [LSZ02] looked up a list of about 15,000 RRSets from 75

different locations on the internet, and compared what they saw. They

concluded that the best improvement in DNS performance would come

from reducing the latency of lookups to servers other than the root and

TLDs, although they also found that TLD server placement meant that

lookup latency depended on the client’s geographical location. These find-

ings support the thesis of this dissertation: removing the large number of

lower-level servers would increase the performance of the DNS.

As part of the CoDNS project, Park et al. [PPPW04] performed a sur-

vey of query latencies at caching resolvers around PlanetLab [PACR02].

They found that there were significant delays in the caches, and that the

delays were independent of the queries. Their diagnosis is that DNS cach-

ing resolvers are usually on machines that perform other duties (mail

server, web server etc.) and those other duties occasionally starve the DNS

cache of resources. This leads to internal delays that occur in bursts and

have nothing to to with the rest of the DNS architecture. They suggest

that these delays have probably introduced noise into other DNS surveys.

Their response, the CoDNS network, is described below.

Pang et al. [PHA+04] measured the reachability of caching resolvers,

which they identified from the logs of Akamai servers, and of authoritative

servers, which they identified from web cache logs. Over two weeks, they

found that generally, availability was high: 95% of caches and 95% of

authorities were reachable more than 95% of the time. Also, availability

was slightly positively correlated with the load on the server — that is,

both busy caches and popular authorities were more likely to have high

availability.
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Bugs and misconfigurations

Broido et al. [BNc03] give an interesting analysis of erroneous updates

to the reverse mappings of RFC 1918 IP addresses. These used to arrive

at the root servers but are now mostly diverted to dedicated servers in

AS112†. By using spectroscopy on the inter-arrival times of these update

packets they find that the major cause is unhelpful default settings in

Microsoft Windows 2000 and XP DNS software.

Wessels [Wes04] identifies a set of common errors in network, host

and resolver configuration, which are responsible for useless DNS traffic

at the root servers. He even provides a tool to help network administrators

detect these problems on their networks.

Pappas et al. [PXL+04] present a survey of configuration errors in the

delegation of zones, based on about 52,000 zones. They found that 15%

of the delegations inspected were lame in at least one server, 45% had

all their nameservers in the same /24 subnet, and 77% had all their serv-

ers in the same AS. These errors would be eliminated from the DNS by

centralizing it and removing the large number of authoritative servers.

Ramasubramanian and Sirer [RS05] raise the issue of transitive trust

in zone delegations. The security of a zone’s service depends not only on

that zone’s nameservers, but on the servers that are authoritative for the

names of those nameservers, and on the servers that are authoritative for

their names, and so forth. They calculate that, on average, a zone can be

hijacked by compromising 2.5 servers in this tree of trust, which need not

necessarily be controlled by, or even known to the zone’s administrator.

For 30% of zones, this vulnerable set is made entirely of servers that are

running out-of-date and known-vulnerable software. Again, removing the

delegation of service from the DNS would solve this problem.

†http://public.as112.net/.
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8.3 New architectures

A number of projects and proposals have been published in the last few

years for major architectural changes to the DNS, with the aim of solving

the problems discussed in Chapter 3.

Replication

Kangasharju and Ross [KR00] advocate replacing per-zone secondary au-

thoritative nameservers with a set of replica servers, each holding a full

copy of the DNS. Each server would be responsible for managing updates

to a subset of the zones in the DNS: it would pull copies of its zones from

their primary servers and propagate them to the other replicas via multic-

ast IP or satellite channels.

They calculate the probable size of the DNS by multiplying the number

of hosts in the ISC host count (56 million in 1999) by an estimate of the

amount of DNS data each host should need, and conclude that 10 GB

should be enough (small enough to be held on a single hard drive). Using

this estimate they calculate that a 2Mbit/s global multicast channel would

allow each record to change 11 times per day. They do not discuss any

details of how the service would be implemented.

Although this proposal is similar to what we describe in this disserta-

tion, it has a number of differences. Kangasharju and Ross want to keep

the existing set of primary authoritative servers; their new system is a

replacement for secondary servers and caches. They replace the zone-

transfer system with a more widely distributed multicast or satellite chan-

nel. This leaves all the problems of wide distribution and lame delegations

in place. They do not present any details of implementation or evaluate

their design against real DNS data.

LaFlamme and Levine [LL04] suggest using a similar scheme, but only

for the root and top-level-domain zones. These zones would be replicated

widely to mitigate the effects of denial-of-service attacks on the root and

TLD servers. They measured the changes in the com, net and org zones
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over a month in 2004 and found that the daily updates came to less than

500KB. Querying the NS RRSets of 2,266 second-level domains every four

hours for six months, they found that 70% of them had not changed over

that time, and 93% of them had at least one NS RR the same. They con-

clude that it would be reasonable for caching resolvers to fall back on a

replica of the TLD zones if queries to the TLD servers timed out. They

describe a distribution mechanism for TLD updates implemented by pub-

lishing the daily differences to a USENET group.

Handley and Greenhalgh [HG05] suggest another similar scheme, us-

ing a custom peer-to-peer content distribution network to push the TLD

zone contents. This scheme is also intended as a fallback mechanism to

be used after normal DNS queries fail.

Malone [Mal04] considers widespread replication of the root zone as

a means of lightening the load on the root servers. He suggests that each

caching resolver should act as a secondary server for the root zone. Re-

solvers would then send one SOA query to a root server every six hours and

transfer only the changes that are made, instead of sending one query per

TLD every four days. In an experiment using some academic caching re-

solvers (serving about 1000 users) it was found that the traffic to and from

the root servers was about the same using zone transfers as it had been be-

fore, although it involved fewer packets. Malone’s experiment used AXFR;

it seems likely that his results would be more encouraging using incre-

mental transfers. Unfortunately, the scheme requires the cooperation of

resolver administrators throughout the internet, and so would only reduce

the quantity of well-behaved traffic at the root servers; but the traffic at

the root servers is mostly caused by ill-behaved resolvers [WF03], which

would be unaffected.

Peer-to-peer lookup schemes

The DNS could be served from a peer-to-peer (p2p) overlay network. It

is an attractive target application for p2p systems, since it is a large and

useful distributed lookup system, and widely distributed lookups are what
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p2p overlays do well. Also, the robustness and scalability of p2p net-

works are desirable properties in a nameservice. The data, and the load

of serving it, could be spread across many relatively lightweight servers,

and new servers could easily be added to increase capacity.

In 2002, Cox et al. [CMM02] evaluated using the DHash distributed

hash table (DHT) to provide DNS-style nameservice. They simulated a

nameservice based on DHash/Chord, using lookups taken from traces of

academic networks, and concluded that the DHT-based service would be

more fault-tolerant and better load-balanced (assuming all nodes to be

equally capable of serving data). However, they saw a marked increase

in lookup latency over the native DNS, since each record is held on a

small number of nodes and queries must be routed through the overlay

network, travelling O(log n) hops in a n-server network.

The CoDoNS project [RS04] aims to address the latency issue by rep-

licating popular (i.e. frequently-read) records more widely through the

DHT, thus reducing the average latency of lookups. Less popular data are

left with longer read times. (Also, the latency improvement is only felt by

those clients whose lookup patterns match the global popularity distribu-

tion [PMTZ06].) Update latency is also higher for more popular records,

because the extra replicas must be reached. CoDoNS has been implemen-

ted and deployed on PlanetLab; in [RS04] a 75-server network was meas-

ured serving 47,230 records at a rate of 6.5 queries per second divided

uniformly among the servers (i.e., 0.087 queries per second per server).

The mean latency was 106ms and the median 2ms, and the network used

12.2KB/s per node including all queries and update traffic. Equivalent

numbers for a dedicated 75-server “legacy” DNS testbed serving the same

query rate were not supplied. Instead, the numbers were compared to the

measured latency of the same queries submitted to the public DNS, which

had mean 382ms and median 39ms (including one extra mandatory net-

work hop, since the clients were co-located with CoDoNS nodes but not

with their caching resolvers). The PlanetLab deployment of CoDoNS is

currently available for public use as a caching resolver, relying on the nor-

mal DNS to answer queries that are not in the system.
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While membership of the CoDoNS overlay is restricted to “official”

servers, avoiding the question of peers’ trustworthiness, Awerbuch and

Scheideler [AS04a, AS04b] suggest some schemes whereby a nameservice

could be made based on a peer-to-peer network that is open to all comers.

They describe two mechanisms by which such a network could be made

immune to arbitrary adversarial peers joining the system, provided that

the adversaries are “in a sufficient minority”.

These peer-to-peer systems do not address the central issue of the com-

plexity of lookups — rather, they replace one complex lookup mechanism

with another one. Even with aggressive caching, many queries will need

to be redirected from server to server; our centralized system, by contrast,

answers every query at the first server.

In addition, although the peer-to-peer networks are proposed as re-

placements for the authoritative servers, the implementations described

have been of caching resolvers. The authors do not suggest how the

DNSSEC and wildcard algorithms would be efficiently implemented in

a hash-based lookup scheme. (We observe that it might be possible to

implement DNSSEC using an order-preserving hash function [FCDH90]

instead of a uniform one, but that would introduce another trade-off into

the system: uniformity of query load across the nodes is traded for uni-

formity of database size.) Additional-section processing would also re-

quire lookups to be redirected between nodes before the answer is re-

turned.

Pappas et al. [PMTZ06] compare the recursive hierarchical lookups

of the DNS with flat DHT-based lookups. They show that the hierarchy in

the DNS allows it to outperform DHTs because DNS clients can use cached

routing data from one lookup to help in other lookups. They also show

that although DHTs are less vulnerable to orchestrated attacks than the

DNS is, they are more vulnerable to random node failure. They conclude

that a DHT could achieve the current DNS’s level of performance and

failure-resistance only at a higher cost, and suggest that the extra effort

would be better spent in hardening the existing DNS.
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New caching mechanisms

Jung et al. [JSBM01, JBB03] argue that the DNS’s TTL-based caching is

limited by the Zipf-like popularity distribution of records. Using trace-

driven simulation of DNS caches, they show that eliminating caching en-

tirely for A RRSets would increase DNS traffic by only a factor of four,

and that 80–90% of the cache hit rate of the DNS would be achieved with

TTLs of about 15 minutes.

Cohen and Kaplan [CK01] suggest allowing caches to keep stale re-

cords, and provide them in response to lookups while re-fetching them in

the background. This would eliminate the lookup delay for queries where

stale answers are in the cache. Their example is a unified web cache and

DNS resolver, where an incorrect speculation can be caught before its ef-

fects are seen by the client. The cache would proceed with re-fetching the

RRSet and at the same time attempt to fetch the web page using the old

RRSet, only forwarding it to the client once the refetch completed and it

was known that the RRSet had not changed. Using trace-based simulation

they show that using stale DNS records has a 98–99% success rate for this

kind of lookup.

CoDNS [PPPW04] responds to delays and faults in caching resolvers

by replacing the stub resolver library with one that times out more quickly

in the face of failure, and that can route queries to caching resolvers other

than the ones configured at its local site. Each CoDNS client is part of the

CoDeeN peer-to-peer content distribution network, and is given the ability

to send DNS queries to its neighbour nodes in CoDeeN, which will pass

on the queries to their local caches. If a node’s local caching resolvers

do not respond to a query within 200ms, it starts using remote caches

in parallel with the local ones. This smooths out temporary delays in

caches by timing out more quickly and works around long-term issues

with caches by providing a wider pool of caches to work with. In tests on

PlanetLab, CoDNS clients routed 18.9% of their queries to remote caches

and, for 34.6% of those queries, the latency of going to a remote server

was lower than that of waiting for the local query to finish [PWPP04].
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Building on top of the DNS

The papers discussed above address the implementation difficulties of the

DNS. There are also proposed naming systems that tackle its semantic

shortcomings by building other naming services on top of it. In particular

these proposals address naming services for higher-level protocols, where

the DNS’s hierarchical namespace and implied one-to-one name-to-host

mapping are unhelpful.

The Web Services community has a series of naming schemes starting

with the DNS, and adding Uniform Resource Identifiers (URIs) [BLFM05],

then a Web Services Definition Language (WSDL)[CGM+04], which maps

from the name of a service to the URIs that provide it. This is followed by

a Web Services Addressing Specification [Box04], which defines a service

in terms of both URIs and WSDL specifications.

The Resource Locator Service [EF01] proposed to identify objects in

the internet using versioned opaque identifiers, with a DHT-like lookup

layer that would provide objects with mobility and permanent names. Se-

mantic Free Referencing [WBS04] is similar: URLs would be replaced by

signed opaque identifiers; lookups would involve resolving the semantic-

free name to a tuple of lower-level naming information (for example, a

URL) and then resolving names from that tuple in the DNS. Again the mo-

tivation is that these opaque identifiers would be permanently attached to

web objects, independent of the objects’ locations. The argument is that

that this would remove the tendency for URLs to become out of date as

web publishers reorganize or move their sites. Also, since the identifi-

ers have no inherent meaning, there would be no need for the political

difficulties involved in DNS delegation disputes (leaving only the usual

difficulties of a public-key infrastructure for verifying the signatures).

Balakrishnan et al. [BLR+04] take this idea further and suggest a

three-layered naming scheme, with Service Identifiers at the top level,

attached to internet services. Each Service Identifier would resolve to a

set of Endpoint Identifiers, indicating the locations where the service is

available and possibly also gateways through which queries to those en-
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dpoints should be routed. Endpoint Identifiers would in turn resolve to

network addresses. The main difference between this and the Web Ser-

vices naming hierarchy mentioned above is that the Service and Endpoint

Identifiers would be opaque, drawn from flat namespaces and resolved

using peer-to-peer lookups.

The Host Identity Protocol [MNJH05] is another cryptographic flat-

namespace architecture, intended to give mobility to IP endpoints rather

than objects.

Replacing the DNS entirely

Building a new nameservice from scratch would allow a lot of freedom

to design a service that is suited to the needs of the DNS’s current or

proposed future users. Unfortunately, the DNS is too far entwined in the

software at every point on the internet to hope to extract it now, so any

plausible strategy will have to interoperate cleanly with the clients of the

current DNS or, at least, leave the DNS in place for those who cannot use

the new scheme.

The Universal Name Service [Ma92] is a general naming service for

distributed systems. It uses a two-tier system, where each directory is

controlled by a small pool of “first class” servers which accept updates,

and also served from a larger number of “second class” servers whose rep-

licas are read-only, and may be out of date. The UNS uses a hierarchical

naming scheme, where each node is assigned an opaque, globally unique

identifier, rather like a filesystem inode number. These opaque identi-

fiers are used to allow reorganization of the namespace tree, including

recursively encapsulating subspaces within each other. The UFP protocol

discussed in Chapter 6 was designed for synchronizing updates between

first-class replicas in UNS.

Active Names [VDAA99] extend the ideas of active networks into nam-

ing: each name lookup would involve following a chain of programs in

various resolvers around the network. Each program would perform ar-

bitrary computations on the request to transform it into another request



8.4. SUMMARY 101

to be forwarded to another server. The programs themselves would be

identified by their own (also active) names, to allow them to be loaded

dynamically into the servers. There would have to be a small set of “boot-

strap” programs that would be present in every server to help them load

the other ones.

8.4 Summary

We have described the DNS development work that is going on in the IETF,

some measurement projects, and some of the other designs for improved

DNS architectures. Much of it is orthogonal to our centralized design,

except that a centralized architecture would make it easier to roll out

changes across the whole DNS.

Both replicating the DNS and removing the current hierarchy of serv-

ers have been suggested independently, but not as part of a single design

and not with the aim of centralizing the service. Since there has been no

quantitative description of the task performed by the current DNS, previ-

ous architectural proposals have not been evaluated against it. We note

in particular that the difficulties of implementing DNSSEC and additional-

section processing over a distributed hash table have not been addressed.

In the next chapter, we will conclude the dissertation with a brief

discussion of the changing circumstances that have made a centralized

nameservice into a plausible idea once again.





9 Conclusion

In this dissertation, we have argued that a centralized nameservice is cap-

able of replacing the current DNS, as well as solving many of its diffi-

culties.

We described the operation of the current DNS, and gave a set of re-

quirements that any replacement must meet. We argued that many flaws

in the DNS come from the misplacement of complexity in the current

system, and proposed an architecture for a centralized DNS that would

change this without requiring the clients of the DNS to change. We dis-

cussed how updates would be handled in this new system, and how a

large server might be built that could serve the entire DNS.

In conclusion, we believe that this centralized DNS is capable of hand-

ling the load on the current DNS with lower latency, fewer configuration

errors, and less risk of failure.

9.1 Changing tradeoffs

The size and shape of any distributed system depend on a number of

tradeoffs that change over time. The architecture of the system must

change with them — for example, the world-wide web is distributed for

load balance and administrative reasons but, after five years, it developed

a series of centralized index sites.

When the DNS was designed and deployed, some of the tradeoffs were

as follows.

• Manpower was more important than bandwidth or latency: the task

103
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of approving updates to the database had to be distributed. This

has not changed; indeed it would be ridiculous today to imagine a

scheme where one administrator managed the entire namespace.

• Processing capacity was more important than bandwidth or latency:

the task of serving the records was best spread across many systems.

This tradeoff has changed as processor power has become cheaper.

The task of serving DNS records has not become any more difficult,

nor have the zones grown in size, so the number of zones that a

single server can serve has grown over time. This makes it possible

once again to build a server that knows the entire DNS.

• The latency of a few extra hops was not important considering the

timescales of processes involved. This has also changed. As band-

width and processing power increase, making the other parts of an

internet transaction faster, the latency of a DNS lookup is becoming

more noticeable [HA00, CK00].

Because the tradeoffs have changed, the architectural choices that are

possible have changed with them, and a central nameservice is once again

a reasonable choice. Of course, in the future, these tradeoffs will change

again.

• As the number of computers and people attached to the internet

grows, the number of names in the DNS will increase. Assuming that

the average rate of change stays constant, this may drive the update

rate so high that it overwhelms the update propagation mechan-

ism. We may need to abandon our design choice that every node

knows every record, and fall back to something more like Grapev-

ine [BLNS82]: every zone is replicated only at a subset of servers,

but all servers hold the index of which zones are where.

• Likewise, as the number of internet-connected machines increases,

with ubiquitous computing and smart appliances becoming more
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popular, the load of queries may become too much for a small num-

ber of nodes to handle. In this case we may have to abandon our

design decision that every node accepts updates, and fall back to

a two-tier service more like UNS: a second class of servers hangs

off the primary servers, serving all the records but only accepting

queries from the core set of primary servers.

In either of these cases, we still believe that the current widely distrib-

uted system would be a worse choice.

9.2 Future directions

There are, of course, a number of questions that have arisen during the

writing of this dissertation, that we have been unable to address. We list

some of them here, as possible starting points for future work.

Changes to caches and clients

In this dissertation, we have restricted ourselves to changes to the author-

itative servers that do not require any change in the clients or caching

resolvers. However, there might be some benefit to be had from relaxing

this requirement. What features could be enabled by small changes to the

caching resolvers? What useful metadata could be added to responses to

help caches in the new centralized system? Would it be possible to im-

plement a smarter, more explicit version of the DNS-based load-balancing

tricks that are in use today?

We know from [CK01] and [JBB03] that the TTL-based caching scheme

is not optimal, and from [PPPW04] that timers and retry algorithms in

caches cause noticeable delays. Is there a better caching scheme that

could be incrementally deployed in the DNS? (And, if changes are to be

made at every DNS-aware machine in the internet, would it be better to

abandon the DNS altogether and start again with a clean slate?)
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Other approaches

There have been a number of architectural changes proposed for the DNS

in recent years [KR00, CMM02, LL04, HG05, RS04, AS04b]. It would

be interesting to evaluate them against the quantitative requirements we

listed in Chapter 4.

Data structures

The data structure described in Chapter 7 is efficient for lookups but needs

locking to allow safe concurrent updates. Because lookups can backtrack

in the trie, either reads must be disabled while updates are made, or some

sort of double-buffering is needed to allow updates to be made to one

copy while lookups are done on the other. Can we use techniques from

lock-free data structures to allow safe concurrent updates to the trie?

Protocol development

Even if a system such as we have described is never built, are there parts

of it that can be useful to DNS protocol development? The principle that

complexity in the DNS should be in the updates rather than the queries is

one that could help in the design of new protocol extensions.

Also, some intermediate stage between today’s wide distribution and

our centralized model could be useful. The main advantages of the scheme

are only achieved when parent and child zones are aggregated onto the

same server, which suggests that per-TLD centralization would be a pos-

sible middle ground.

Other protocols

The argument about placement of complexity in a distributed system can

be applied to other internet protocols, even if the particular solution we

suggest is not appropriate. Not all protocols have the relative uniformity

of deployment that the DNS has, and not all have the option of separat-

ing service from administrative control. HTTP, for example, is used for a
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wide range of services far exceeding its original intended use. NFS or RSS

are more promising protocols for investigation. They are services which

are still used mostly for their original purposes, and where there is some

flexibility in the way the workload is shared between systems. Unsurpris-

ingly, they are also both areas for which peer-to-peer alternatives have

been suggested.

Measurement

There is already a lot of DNS measurement work going on. However, al-

though we know a lot about caches and root servers, we know relatively

little about the authoritative servers lower down the delegation tree. How

much work are they doing? How is the load spread among them? What

sort of attacks are being launched against them, and with how much suc-

cess?

9.3 Summary

We will end by repeating the three points that we made in the introduc-

tion, and have discussed in the preceding chapters:

• The complexity of the DNS should be moved from the lookup pro-

tocol into the update protocol, because there are many lookups and

comparatively few updates.

• A centralized nameservice of about a hundred nodes, each having a

full copy of the namespace, would be an effective way of achieving

this.

• A nameserver node capable of holding the entire DNS can be built

using the data structure and algorithms we have described.





A Implementation in Objective

Caml

The following OCaml functions implement the data structure and associ-

ated algorithms described in Chapter 7. The C version is about five times

the size, and a great deal less readable.

Support for DNSSEC takes up approximately one sixth of the code.

In particular, the differing attitudes of the wildcard and the DNSSEC al-

gorithms to internal “empty non-terminals” causes some duplication of

effort.
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(*

dnstrie.ml – 256-way radix trie for DNS lookups

Copyright (c) 2005-2006 Tim Deegan <tjd@phlegethon.org>

*)

open Dnsrr;;

(*

Non-standard behaviour:

– We don’t support ’\000’ as a character in labels (because 10

it has a special meaning in the internal radix trie keys).

– We don’t support RFC2673 bitstring labels. Could be done but

they’re not worth the bother: nobody uses them.

*)

type key = string;; (* Type of a radix-trie key *)

exception BadDomainName of string;; (* Malformed input to canon2key *)

(* Convert a canonical [ “www”; “example”; “com” ] name to a key. 20

N.B. Requires that the input is already lower-case! *)

let canon2key string list =

let labelize s =

if String.contains s ’\000’ then

raise (BadDomainName "contains null character");

if String.length s = 0 then

raise (BadDomainName "zero-length label");

if String.length s > 63 then

raise (BadDomainName ("label too long: " ^ s));

s 30

in List.fold left (fun s l → (labelize l) ^ "\000" ^ s) "" string list
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(* A “compressed” 256-way radix trie, with edge information provided

explicitly in the trie nodes rather than with forward pointers.

For more details, read:

Robert Sedgewick, “Algorithms”, Addison Welsey, 1988.

Mehta and Sahni, eds., “Handbook of Data Structures and Applications”,

Chapman and Hall, 2004. *)

module CTab = Hashtbl.Make (struct 40

type t = char

let equal a b = (a == b)

let hash a = Hashtbl.hash a

end)

type nodeflags = Nothing | Records | ZoneHead | SecureZoneHead | Delegation

and dnstrie = {

mutable data: dnsnode option; (* RRSets etc. *)

mutable edge: string; (* Upward edge label *)

mutable byte: int; (* Byte of key to branch on *) 50

mutable children: dnstrie array; (* Downward edges *)

mutable ch key: string; (* Characters tagging each edge *)

mutable least child: char; (* Smallest key of any child *)

mutable flags: nodeflags; (* Kinds of records held here *)

}

let bad node = { data = None; edge = ""; byte = −1;

children = [| |]; ch key = ""; least child = ’\255’;

flags = Nothing; }

60

exception TrieCorrupt (* Missing data from a soa/cut node *)
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(* Utility for trie ops: compare the remaining bytes of key with the

inbound edge to this trie node *)

let cmp edge node key =

let edgelen = String.length node.edge in

let offset = node.byte − edgelen in

let keylen = String.length key − offset in

let cmplen = min edgelen keylen in

let cmpres = String.compare (String.sub node.edge 0 cmplen)

(String.sub key offset cmplen) in 70

if cmpres = 0 then begin

if keylen >= edgelen then

‘Match (* The key matches and reaches the end of the edge *)

else

‘OutOfKey (* The key matches but runs out before the edge finishes *)

end

else if cmpres < 0 then

‘ConflictGT (* The key deviates from the edge, and is “greater” than it *)

else (* cmpres > 0 *)

‘ConflictLT (* The key deviates from the edge *) 80

(* Utility for trie ops: number of matching characters *)

let get match length trie key =

let rec match r edge key n off =

try

if edge.[n] = key.[n + off] then match r edge key (n + 1) off

else n

with

Invalid argument → n 90

in

let offset = trie.byte − (String.length trie.edge) in

match r trie.edge key 0 offset
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(* Child table management: arrays*)

let new child table () = Array.copy [| |]

let children iter f node =

let ch count = Array.length node.children in

assert (ch count == String.length node.ch key);

for i = 0 to (ch count − 1) do 100

f node.ch key.[i] node.children.(i)

done

let child lookup char node =

let ch count = Array.length node.children in

assert (ch count == String.length node.ch key);

let rec lfn i =

if (i >= ch count) then None

else if node.ch key.[i] = char then Some node.children.(i)

else lfn (i + 1) 110

in lfn 0

let child update node char child =

let ch count = Array.length node.children in

assert (ch count == String.length node.ch key);

let rec ufn i =

if (i >= ch count) then true

else if node.ch key.[i] = char then

begin node.children.(i) ← child; false end

else ufn (i + 1) 120

in if ufn 0 then

begin

node.children ← Array.append node.children (Array.make 1 child);

node.ch key ← (node.ch key ^ (String.make 1 char))

end
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let child delete node char =

let ch count = Array.length node.children in

assert (ch count == String.length node.ch key);

try

let i = String.index node.ch key char in 130

node.ch key ← ((String.sub node.ch key 0 i)

^ (String.sub node.ch key (i+1) (ch count − (i+1))));

node.children ← (Array.append

(Array.sub node.children 0 i)

(Array.sub node.children (i+1) (ch count − (i+1))));

with Not found → ()

let child lookup less than char node =

let ch count = Array.length node.children in

assert (ch count == String.length node.ch key); 140

let rv = ref None in

let rc = ref ’\000’ in

let ifn c n =

if c >= !rc && c < char then begin rc := c; rv := Some n end

in children iter ifn node;

!rv

let child count node =

Array.length node.children

150

let only child node =

assert (Array.length node.children = 1);

node.children.(0)
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(* Assert that this value exists: not every trie node needs to hold data,

but some do, and this allows us to discard the “option” when we know

it’s safe *)

let not optional = function

Some x → x

| None → raise TrieCorrupt

160

(* Make a new, empty trie *)

let new trie () =

let rec n = { data = None;

edge = "";

byte = 0;

children = [| |];

ch key = "";

least child = ’\255’;

flags = Nothing; 170

} in n

(* Simple lookup function: just walk the trie *)

let rec simple lookup key node =

if not (cmp edge node key = ‘Match) then None

else if ((String.length key) = node.byte) then node.data

else match (child lookup key.[node.byte] node) with

None → None

| Some child → simple lookup key child 180
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(* DNS lookup function *)

let lookup key trie =

(* Variables we keep track of all the way down *)

let last soa = ref bad node in (* Last time we saw a zone head *)

let last cut = ref trie in (* Last time we saw a cut point *)

let last lt = ref trie in (* Last time we saw something < key *)

let last rr = ref trie in (* Last time we saw any data *)

let secured = ref false in (* Does current zone use DNSSEC? *)

(* DNS lookup function, part 4: DNSSEC authenticated denial *) 190

let lookup nsec key =

(* Follow the trie down to the right as far as we can *)

let rec find largest node =

let lc = ref ’\000’ in

let child = ref node in

let ifn c node = if c >= !lc then begin lc := c; child := node end in

children iter ifn node;

if !child = node then node

else find largest !child

in 200

let ch = key.[!last lt.byte] in

(* last lt is the last chance we had to go to the left: could be for a

number of reasons *)

if not (cmp edge !last lt key = ‘Match) then

find largest !last lt (* All of last lt is < key *)

else if ch <= !last lt.least child then

!last lt (* Only last lt itself is < key *)

else (* Need to find the largest child less than key *)

let lc = ref !last lt.least child in

let ln = ref !last lt in 210

let ifn c node =

if c >= !lc && c < ch then begin lc := c; ln := node end in

children iter ifn !last lt;

find largest !ln

in
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(* DNS lookup function, part 3: wildcards. *)

let lookup wildcard key last branch =

(* Find the offset of the last ’\000’ in the key *)

let rec previous break key n = 220

if n < 0 then −1 else match key.[n] with

’\000’ → n

| → previous break key (n − 1)

in

(* Find the offset of the “Closest Encounter” in the key *)

let closest encounter key last branch =

let first bad byte = (last branch.byte − String.length last branch.edge)

+ get match length last branch key in

previous break key first bad byte 230

in

(* Lookup, tracking only the “last less-than” node *)

let rec wc lookup r key node =

match (cmp edge node key) with

‘ConflictGT → last lt := node; None

| ‘ConflictLT | ‘OutOfKey → None

| ‘Match →

if ((String.length key) = node.byte)

then node.data 240

else begin

if not (node.data = None) | | node.least child < key.[node.byte]

then last lt := node;

match (child lookup key.[node.byte] node) with

None → None

| Some child → simple lookup key child

end

in

(* Find the source of synthesis, and look it up *) 250
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let byte = (closest encounter key last branch) + 1 in

let ss key = String.sub key 0 byte ^ "*\000" in

(ss key, wc lookup r ss key !last rr)

in

(* DNS lookup function, part 2a: gather NSECs and wildcards *)

let lookup failed key last branch =

if (!last cut.byte > !last soa.byte)

then ‘Delegated (!secured, not optional !last cut.data) 260

else begin

if !secured then

let nsec1 = lookup nsec key in

match lookup wildcard key last branch with

( , Some dnsnode) → ‘WildcardNSEC (dnsnode,

not optional !last soa.data,

not optional nsec1.data)

| (ss key, None) → let nsec2 = lookup nsec ss key in

‘NXDomainNSEC (not optional !last soa.data,

not optional nsec1.data, not optional nsec2.data) 270

else

(* No DNSSEC: simple answers. *)

match lookup wildcard key last branch with

(k, Some dnsnode) → ‘Wildcard (dnsnode, not optional !last soa.data)

| (k, None) → ‘NXDomain (not optional !last soa.data)

end

in

(* DNS lookup function, part 2b: gather NSEC for NoError *) 280

let lookup noerror key =

if (!last cut.byte > !last soa.byte)

then ‘Delegated (!secured, not optional !last cut.data)

else begin

if !secured then
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(* Look for the NSEC RR that covers this name. RFC 4035 says we

might need another one to cover possible wildcards, but since this

name “exists”, the “Next Domain Name” field of the NSEC RR will

be a child of this name, proving that it can’t match any wildcard *)

let nsec = lookup nsec key in 290

‘NoErrorNSEC (not optional !last soa.data, not optional nsec.data)

else

‘NoError (not optional !last soa.data)

end

in

(* DNS lookup function, part 1: finds the node that holds any data

stored with this key, and tracks last * for use in DNSSEC and wildcard

lookups later. *) 300

let rec lookup r key node last branch =

match cmp edge node key with

‘ConflictLT → lookup failed key last branch

| ‘ConflictGT → last lt := node; lookup failed key last branch

| ‘OutOfKey → lookup noerror key

| ‘Match →

begin

begin

match node.flags with

Nothing → () 310

| Records → last rr := node

| ZoneHead → last rr := node;

last soa := node; last cut := node; secured := false

| SecureZoneHead → last rr := node;

last soa := node; last cut := node; secured := true

| Delegation → last rr := node; last cut := node

end;

if ((String.length key) = node.byte) then

match node.data with

Some answer → 320
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if (!last cut.byte > !last soa.byte)

then ‘Delegated (!secured, not optional !last cut.data)

else ‘Found (!secured, answer, not optional !last soa.data)

| None → lookup noerror key

else begin

if not (node.data = None) | | node.least child < key.[node.byte]

then last lt := node;

match (child lookup key.[node.byte] node) with

None → lookup failed key node

| Some child → 330

begin

assert (child.byte > node.byte);

lookup r key child node

end

end

end

in

lookup r key trie trie
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(* Return the data mapped from this key, making new data if there is 340

none there yet. *)

let rec lookup or insert key trie ?(parent = trie) factory =

let get data or call factory node =

match node.data with

Some d → d

| None →

let d = factory () in

node.data ← Some d;

assert (node.flags = Nothing);

node.flags ← Records; 350

d

in

if not (cmp edge trie key = ‘Match) then begin

(* Need to break this edge into two pieces *)

let match len = get match length trie key in

let rest len = String.length trie.edge − match len in

let branch = { data = None;

edge = String.sub trie.edge 0 match len;

byte = trie.byte − rest len;

children = [| |]; 360

ch key = "";

least child = trie.edge.[match len];

flags = Nothing;

} in

(* Order of the next two lines is important *)

child update parent branch.edge.[0] branch;

trie.edge ← String.sub trie.edge match len rest len;

child update branch trie.edge.[0] trie;

(* Don’t need to update parent.least child *)

lookup or insert key branch ˜parent:parent factory 370

end else begin

let length left = (String.length key) − trie.byte in

if length left = 0 then

get data or call factory trie
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else begin

match (child lookup key.[trie.byte] trie) with

Some child → begin

lookup or insert key child ˜parent:trie factory

end

| None → let child = { data = None; 380

edge = String.sub key trie.byte length left;

byte = String.length key;

children = [| |];

ch key = "";

least child = ’\255’;

flags = Nothing;

} in

assert (child.edge.[0] = key.[trie.byte]);

child update trie child.edge.[0] child;

trie.least child ← min trie.least child key.[trie.byte]; 390

get data or call factory child

end

end
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(* Sort out flags for a key’s node; call after inserting significant RRs *)

let rec fix flags key node =

let soa = ref false in

let ns = ref false in

let dnskey = ref false in

let rec set flags node rrset = 400

match rrset.rdata with

SOA → soa := true

| NS → ns := true

| DNSKEY → dnskey := true

| → ()

in

if not (cmp edge node key = ‘Match) then ()

else if ((String.length key) = node.byte) then begin

match node.data with 410

None → node.flags ← Nothing

| Some dnsnode → List.iter (set flags node) dnsnode.rrsets;

if !soa then

if !dnskey then

node.flags ← SecureZoneHead

else

node.flags ← ZoneHead

else if !ns then

node.flags ← Delegation

else 420

node.flags ← Records

end else match (child lookup key.[node.byte] node) with

None → ()

| Some child → fix flags key child
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(* Delete all the data associated with a key *)

let rec delete key ?(gparent = None) ?(parent = None) node =

if not (cmp edge node key = ‘Match) then ()

else if ((String.length key) != node.byte) then

begin

match (child lookup key.[node.byte] node) with 430

None → ()

| Some child → delete key ˜gparent:parent ˜parent:(Some node) child

end

else let collapse node p n =

let c = only child n in

c.edge ← (n.edge ^ c.edge);

child update p c.edge.[0] c

in begin 440

node.data ← None;

match parent with None → () | Some p →

match child count node with

1 → collapse node p node

| 0 →

begin

child delete p node.edge.[0];

if ((p.data = None) && (child count p = 1)) then

match gparent with None → () | Some gp → collapse node gp p

end 450

| → ()

end



B UNS First Protocol

For reference, we give here a summary of the workings of the UNS First

Protocol, the pessimistic protocol used in Chapter 6. Full details and

analysis of the protocol are published in Chaoying Ma’s Ph.D. disserta-

tion [Ma92].

Each participant Pi maintains a triple (Psid, Nsid, PrevR) describing

the state of operations. Psid is the identifier of the last synchronization

in which the the participant voted (if any), and PrevR is the update for

which it voted. Nsid is the identifier of the last synchronization in which

the participant has promised to participate (but not yet necessarily voted).

A synchronization is initiated by a co-ordinator C, and proceeds in

three phases:

Phase 1: gathering a quorum

C makes a new synchronization ID sid and sends it to every participant

Pi, along with the version number of the object’s current state.

Each Pi does one of three things, depending on the version number of

its local replica of the object and the version number it received from C:

• If Pi’s version is newer, it tells C about it. C then abandons the

update until it has obtained the new version of the object.

• If Pi’s version is older, it cannot participate in the synchronization.

Instead, it pulls the new version of the object from another node.

• If the versions are the same, Pi compares its Nsid to sid. If sid is

newer, then it sets Nsid to sid and enters the quorum; otherwise it

125
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declines to enter the quorum. In either case, it sends its Psid and

PrevR to C.

If enough Pi agree to enter a quorum, C looks at all the Psid/PrevR

pairs it received from them. If all of them are empty it proceeds to Phase 2

with the update it wants to propagate. If any of them is not empty, it

chooses the pair with the highest value of Psid and proceeds to Phase 2

using that pair’s PrevR update. (It must then start again at Phase 1 to

propagate its own update.)

Phase 2: voting

C sends sid and the proposed update to every Pi in the quorum it gathered

in Phase 1. Each Pi compares sid with its local triple: if it is equal to

Nsid (and greater than Psid), it sets Psid to sid and PrevR to the update

proposed. In any case, it sends Psid and PrevR to C.

C again looks at the Psid/PrevR pairs it receives from the Pi. If it

receives enough messages with Psid equal to sid to form a quorum, the

vote has passed. If not, C must start again at Phase 1.

Phase 3: commit

C sends a commit order for the proposed update to every Pi in the quorum

that voted for it.

Each of those Pi applies the update to its local replica of the object,

updates its version number, and clears its (Psid, Nsid, PrevR) triple, ready

for the next synchronization.



C DNS record types

The definitions of DNS data types are surprisingly widely scattered: there

is no single standards document listing them all, and some are not de-

scribed in IETF documents at all. We have tried to gather a list of refer-

ences for the types that are established.

Table C.1 lists the RFCs that define the layout and handling rules of

record types. Where types have been redefined or updated we try to give

the most recent reference. Two type numbers are multiply assigned: the

numbers 32 and 33 were assigned in RFC 1002 to NB and NBSTAT, but

were later also assigned to NIMLOC and SRV.

There are ten types that are assigned numbers but not (yet) defined

in any RFC: SPF [WS05], TA [Wei04b], EID [Pat96], NIMLOC [Pat96],

ATMA [ATM96], SINK [Eas99], UINFO, UID, GID, and UNSPEC†. In addi-

tion, the WINS and WINSR types [GE99] are not even on the IANA list of

assigned numbers; they were defined with provisional “private use” num-

bers (65281 and 65282), and WINS/65281 records are still in use.

New types are constantly under development. Currently proposed

types include DHCID [SLG06], HIP [NL05], NFS4ID [Mes05], SLOC [dL05],

SDDA [Mor05] and NSEC3 [LSA05].

RFC 3597 [Gus03] describes handling rules to be followed when re-

solvers encounter records of unknown type.

†These last four types were implemented in older versions of BIND but never de-
scribed in RFCs, so were removed after version 4. BIND 4 came with an ex script to
make UINFO, UID and GID RRs out of a UNIX password file; UNSPEC was an unformatted
binary type used to contain arbitrary data in formats BIND did not understand.
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RFC 1002 [NIE87] NB NBSTAT

RFC 1035 [Moc87b] A NS MD MF CNAME SOA MB MG MR NULL WKS PTR

HINFO MINFO MX TXT AXFR MAILB MAILA ANY

RFC 1183 [EMUM90] RP AFSDB X25 ISDN RT

RFC 1348 [Man92] NSAP-PTR (obsoleted by RFC 1706.)

RFC 1706 [MC94] NSAP

RFC 1712 [FSPB94] GPOS

RFC 1876 [DVGD96] LOC

RFC 1995 [Oht96] IXFR

RFC 2163 [All98] PX

RFC 2230 [Atk97] KX

RFC 2538 [EG99] CERT

RFC 2671 [Vix99] OPT

RFC 2672 [Cra99b] DNAME

RFC 2782 [GVE00] SRV

RFC 2874 [CH00] A6

RFC 2930 [Eas00] TKEY

RFC 3123 [Koc01] APL

RFC 3402 [Mea02] NAPTR

RFC 3596 [THKS03] AAAA

RFC 3645 [KGG+03] TSIG

RFC 3755 [Wei04a] SIG KEY NXT (obsoleted by RFC 4034)

RFC 4025 [Ric05] IPSECKEY

RFC 4034 [AAL+05c] RRSIG DNSKEY NSEC DS

RFC 4255 [SG06] SSHFP

RFC 4431 [AW06] DLV

Table C.1: RFCs that define DNS record types.
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